Fluctuations in Density Functional Theory: Random Metallic Alloys and Itinerant Paramagnets

  • B. L. Gyorffy
  • J. B. Staunton
  • G. M. Stocks
Part of the NATO ASI Series book series (NSSB, volume 337)


Multicomponent metallic systems frequently form random solid solutions. In this interesting state of condensed matter, on the average, atoms occupy a regular array of lattice sites but the nature of the atom on a specific site remains a more or less random variable. If the temperature is lowered the system will either order by making the site occupancies a regular sequence as in intermetallic compounds, or phase separate [1]. Towards higher temperatures in the phase diagram the solid solution field is bounded by the melting curve across which the averaged lattice symmetry is lost. As in the cases of other solids the strange properties of random solid solutions are governed by the electron glue that binds the nuclei together. In what follows we shall be concerned with the current state of the theory which aims to describe this degenerate Fermi System using the Density Functional (DT) approach. As it turns out, this problem is of general interest since it is the simplest quantum mechanical example where explicit random fluctuations have been incorporated into Density Functional Theory.


Density Functional Theory Local Density Approximation Paramagnetic State Local Moment Coherent Potential Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Ducastelle “Order and Phase Stability in Alloys” (North Holland Amsterdam 1991).Google Scholar
  2. 2.
    R.M. Dreizler and E.K.U. Gross “Density functional Theory” (Springer-Verlag 1990).Google Scholar
  3. 3.
    T. Moriya “Spin Fluctuations in Itinerant Ferromagnets” (Springer-Verlag 1985).Google Scholar
  4. 4.
    D.J. Amit “Field Theory, the renormalization group and critical Phenomenon” (Mc Graw-Hill, New York 1978).Google Scholar
  5. 5.
    J.W. Negele and H. Orlando “Quantum Many-Particle Systems” (Addison-Wesley, 1988).Google Scholar
  6. 6.
    A. Gonis “Green Functions for Ordered and Disordered systems” (North-Holland, 1992).Google Scholar
  7. 7.
    L. Schwartz and E. Siggia, Phys. Rev. B5, 383 (1972).ADSGoogle Scholar
  8. 8.
    B.L. Gyorffy and G.M. Stocks in “Electrons in Disordered Metals and at Metallic Surfaces” (ed. P. Phariseau, B.L. Gyorffy and L. Scheire) NATO ASI Series, Physics B42 (Plenum Press 1979).Google Scholar
  9. 9.
    G.M. Stocks, W.H. Temmerman and B.L. Gyorffy, Phys. Rev. Lett. 41, 339 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    G.M. Stocks and H. Winter, Z. Phys. B46, 864 (1982).Google Scholar
  11. 11.
    D.D. Johnson, D.M. Nicholson, F.J. Pinski, B.L. Gyorffy and G.M. Stocks, Phys. Rev. Lett. 56, 2088 (1986).ADSCrossRefGoogle Scholar
  12. D.D. Johnson, D.M. Nicholson, F.J. Pinski, B.L. Gyorffy and G.M. Stocks, Phys. Rev. B41, 9701 (1990).ADSGoogle Scholar
  13. 12.
    B.L. Gyorffy Physica Scripta Vol. T49, 373–377 (1993).ADSCrossRefGoogle Scholar
  14. 13.
    J.F. Janak, Phys. Rev. B9, 3985 (1974).ADSGoogle Scholar
  15. 14.
    V.L. Moruzzi, J.F. Janak and A.R. Williams, “Calculated Electronic Properties of Metals (Pergamon, New York 1978).Google Scholar
  16. 15.
    B.L. Gyorffy and G.M. Stocks, Phys. Rev. Lett. 50, 374 1983.ADSCrossRefGoogle Scholar
  17. B.L. Gyorffy Physica Scripta Vol. T49, 373 (1993).ADSCrossRefGoogle Scholar
  18. 16.
    D.D. Johnson, I.B. Staunton and F.J. Pinski, Phys. Rev. B (to be published). 17. R. G. Jordan, Yan Liu, S.L. Qill, G.M. Stocks, W.A. Shelton, B. Ginatemp. Acta Metalurgica (to be published).Google Scholar
  19. 18.
    A.K. Rajagopal, Adv. Chem. Phys. 41, 59 (1980).CrossRefGoogle Scholar
  20. 19.
    C. Herring “Magnetism” IV editors. G.T. Rado and H. Suhl (Academic Press 1966).Google Scholar
  21. 20.
    J. Hubbard, Phys. Rev. B20, 4584.Google Scholar
  22. H. Hasegawa, J. Phys. Soc. Jap. 46, 1503 (1979).ADSGoogle Scholar
  23. 21.
    B.L. Gyorffy, A.J. Pindor, LB. Staunton, G.M. Stocks and H. Winter, J. Phys. F15, 1337 (1985).ADSCrossRefGoogle Scholar
  24. 22.
    J.B. Staunton and B.L. Gyorffy, Phys. Rev. Lett. 69, 371 (1992).ADSCrossRefGoogle Scholar
  25. 23.
    T. Oguchi, K. Terakura and N. Hamada, J. Phys. F 13, 145 (1983).ADSCrossRefGoogle Scholar
  26. 24.
    A.I. Pindor, J.B. Staunton, G.M. Stocks and H. Winter, J. Phys. F 13, 979 (1983).ADSCrossRefGoogle Scholar
  27. 25.
    B.L. Gyorffy, A.J. Pindor, J.B. Stauton, G.M. Stocks and H. Winter, J. Phys. F: Metal Physics 15, 1337 (1985).ADSCrossRefGoogle Scholar
  28. 26.
    B.L. Gyorffy, A. Barbieri, Y.B. Staunton, W.A. Shelton and G.M. Stocks, Physica B172, 35 (1991).ADSGoogle Scholar
  29. 27.
    B.L. Gyorffy, J.B. Staunton and G.M. Stocks, Phys. Rev. B 39, 6501 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • B. L. Gyorffy
    • 1
  • J. B. Staunton
    • 2
  • G. M. Stocks
    • 3
  1. 1.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.Department of PhysicsUniversity of WarwickCoventryUK
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations