Advertisement

Density Functional Theory of the Superconducting State

  • E. K. U. Gross
  • Stefan Kurth
  • Klaus Capelle
  • Martin Lüders
Part of the NATO ASI Series book series (NSSB, volume 337)

Abstract

Traditional superconductivity of pure metals is well described as a phenomenon of homogeneous media. Due to the relatively large coherence length (102 – 104 Å), inhomogeneities on the scale of the lattice constant can be neglected. In the new high-T c materials the situation is different. Experimental coherence lengths of the order of 10 Å suggest that inhomogeneities on the scale of the lattice constant have to be taken into account in a proper description of these materials.

Keywords

Local Density Approximation Functional Derivative Anomalous Density Inverse Functional Density Functional Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    D. Mattis, E. Lieb, J. Math. Phys. 2, 602 (1961).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    L.N. Oliveira, E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).ADSCrossRefGoogle Scholar
  4. [4]
    L.P. Gorkov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys. JETP 9, 1364 (1959)].Google Scholar
  5. [5]
    V.L. Ginzburg, L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).Google Scholar
  6. [6]
    N.D. Mermin, Phys. Rev. 137, A1441 (1965).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    P.G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).zbMATHGoogle Scholar
  8. [8]
    S. Kurth, K. Capelle, M. Lüders, E.K.U. Gross, to be published.Google Scholar
  9. [9]
    E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Theory (Adam Hilger, Bristol, 1991).zbMATHGoogle Scholar
  10. [10]
    H. Fröhlich, Proc. Roy. Soc. (London) A 215, 291 (1952).ADSzbMATHCrossRefGoogle Scholar
  11. [11]
    J. Bardeen, D. Pines, Phys. Rev. 99, 1140 (1955).ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    N.N. Bogoliubov, Sov.Phys. JETP 7, 41 (1958).MathSciNetGoogle Scholar
  13. [13]
    M. Gell-Mann, K.A. Brueckner, Phys. Rev. 106, 364 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    S. Kurth, E.K.U. Gross, to be published.Google Scholar
  15. [15]
    W. Kohn, E.K.U. Gross, L.N. Oliveira, J.de Physique 50, 2601 (1989).CrossRefGoogle Scholar
  16. [16]
    K. Capelle, E.K.U. Gross, Int.J.Quant.Chem.Symp. (1994).Google Scholar
  17. [17]
    G. Vignale, M. Rasolt, Phys.Rev.Lett. 59, 2360 (1987).ADSCrossRefGoogle Scholar
  18. [18]
    G. Vignale, M. Rasolt, Phys.Rev. B 37, 10685 (1988).ADSCrossRefGoogle Scholar
  19. [19]
    M. Lüders, E.K.U. Gross, Int.J.Quant.Chem.Symp. (1994).Google Scholar
  20. [20]
    O.-J. Wacker, R. Kümmel, E.K.U. Gross, Phys.Rev.Lett. 73, 2915 (1994).ADSCrossRefGoogle Scholar
  21. [21]
    S. Wolfram, Mathematica 2.1, (Wolfram Research 1988–92).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • E. K. U. Gross
    • 1
  • Stefan Kurth
    • 1
  • Klaus Capelle
    • 1
  • Martin Lüders
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WürzburgWürzburgGermany

Personalised recommendations