Skip to main content

Molecules and Molecular Dynamics

  • Chapter
Density Functional Theory

Part of the book series: NATO ASI Series ((NSSB,volume 337))

  • 1047 Accesses

Abstract

This Advanced Study Institute is devoted to the density functional (DF) formalism and its applications. In these lectures I shall discuss the part that DF theory has come to play in calculation of the structure — electronic and geometrical — of molecules, and the way the in which the coupling of DF calculations and molecular dynamics (MD) has widened our perspective on both aspects. Computer simulations will play an increasingly important role in improving our understanding of the properties of molecules, clusters, and bulk materials with complex structures. I shall focus here on methods for calculating the geometrical structures of such systems, the problems that must be faced, and ways of overcoming them. Although the combination of DF and MD schemes has some important advantages, it is by no means a panacea for all our problems in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Crick, in: What mad pursuit, Penguin, London (1988), p. 150.

    Google Scholar 

  2. R.O. Jones, J. Chem. Phys. 82: 325 (1985).

    Article  ADS  Google Scholar 

  3. A. Cayley, Phil Mag. (4) 47: 444 (1874).

    Google Scholar 

  4. A.C. Lunn and J.K. Senior, J. Phys. Chem. 33: 1027 (1929).

    Article  Google Scholar 

  5. G. Polyá, Acta Math. 68: 145 (1937).

    Article  Google Scholar 

  6. M.R. Hoare and J.A. Mclnnes, Adv. Phys. 32: 791 (1983).

    Article  ADS  Google Scholar 

  7. L.T. Wille and J. Vennik, J. Phys. A 18: L419, L1113 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  8. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco (1979).

    MATH  Google Scholar 

  9. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science 220: 671 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61: 689 (1989).

    Article  ADS  Google Scholar 

  11. R. Car and M. Parrinello, Phys. Rev, Lett. 55: 2471 (1985).

    Article  ADS  Google Scholar 

  12. F. Stillinger, T.A. Weber, and R.A. LaViolette, J. Chem. Phys. 85: 6460 (1986).

    Article  ADS  Google Scholar 

  13. R.O. Jones, Angew. Chem. 103: 647 (1991).

    Article  Google Scholar 

  14. R.O. Jones, Angew. Chem. Int. Ed. Engl. 30: 630 (1991).

    Article  Google Scholar 

  15. K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York (1979).

    Google Scholar 

  16. F.H. Stillinger and T.A. Weber, J. Phys. Chem. 91: 4899 (1987).

    Article  Google Scholar 

  17. D. Hohl, R.O. Jones, R. Car, and M. Parrinello, J. Chem. Phys. 89: 6823 (1988).

    Article  ADS  Google Scholar 

  18. P. Hohenberg and W. Kohn, Phys. Rev. 136: B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  19. W. Kohn and L.J. Sham, Phys. Rev. 140: A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  20. G.B. Bachelet, D.R. Hamann, and M. Schlüter, Phys. Rev. B 26: 4199 (1982).

    Article  ADS  Google Scholar 

  21. R. Stumpf, X. Gonze, and M. Scheffler, Research Report, Fritz-Haber-Institut, Berlin (April, 1990), unpublished.

    Google Scholar 

  22. L. Verlet, Phys. Rev. 159: 2471 (1967).

    Article  Google Scholar 

  23. D. Hohl, R.O. Jones, R. Car, and M. Parrinello, Chem. Phys. Lett. 139: 540 (1987).

    Article  ADS  Google Scholar 

  24. J. Donohue, The Structures of the Elements, Wiley, New York (1974), Chapters 8 [group Va] and 9 [group VIa].

    Google Scholar 

  25. R. Steudel, in: Studies in Inorganic Chemistry, Vol. 5, A. Müller and B. Krebs, eds., Elsevier, Amsterdam (1984).

    Google Scholar 

  26. R. Steudel and E.M. Strauss, in: The Chemistry of Inorganic Homo-and Heterocycles, Vol. 2, Academic, London (1987), p. 769.

    Google Scholar 

  27. H. Bitterer, ed., Schwefel: Gmelin Handbuch der Anorganischen Chemie, 8. Aufl., Ergänzungsband 3, Springer, Berlin (1980), p. 8.

    Google Scholar 

  28. R. Steudel, T. Sandow, and J. Steidel, Z. Naturforsch. Teil B 40: 594 (1985).

    Google Scholar 

  29. R. Steudel, Angew. Chem. 87: 683 (1975).

    Article  Google Scholar 

  30. R. Steudel, Angew. Chem. Int. Edit. Engl. 14: 655 (1975).

    Article  Google Scholar 

  31. R. Steudel, Z. Naturforsch. Teil B 38: 543 (1983).

    Google Scholar 

  32. R. Steudel, T. Sandow, and R. Reinhardt, Angew. Chem. 89: 757 (1983).

    Article  Google Scholar 

  33. R. Steudel, Angew. Chem. Int. Edit. Engl. 16: 716 (1983).

    Article  Google Scholar 

  34. L. Pauling, Proc. Nat. Acad. Sci. USA 35: 495 (1949).

    Article  ADS  Google Scholar 

  35. F. Tuinstra, Structural Aspects of the Allotropy of Sulphur and Other Divalent Elements, Delft (1967).

    Google Scholar 

  36. R.O. Jones and D. Hohl, J. Am. Chem. Soc. 112: 2590 (1990).

    Article  Google Scholar 

  37. J. Harris and R.O. Jones, Phys. Rev. A 19: 1813 (1979).

    Article  ADS  Google Scholar 

  38. H. Bitterer, ed., Selenium: Gmelin Handbuch der Anorganischen Chemie, 8. Aufl., Ergänzungsband B2, Springer, Berlin Heidelberg New York (1984).

    Google Scholar 

  39. R.A. Zingaro and W.C. Cooper, eds, Selenium, Van Nostrand Reinhold, New York (1974).

    Google Scholar 

  40. E.H. Henninger, R.C. Buschert, and L. Heaton, J. Chem. Phys. 46: 586 (1967).

    Article  ADS  Google Scholar 

  41. R. Kaplow, T.A. Rowe, and B.L. Averbach, Phys. Rev. 168: 1068 (1968).

    Article  ADS  Google Scholar 

  42. H. Richter, J. Non-Crystalline Solids 8: 338 (1972).

    ADS  Google Scholar 

  43. J. Robertson, Phil. Mag. 34: 13 (1976).

    Article  ADS  Google Scholar 

  44. G. Lucovsky, in: The Physics of Selenium and Tellurium, E. Gerlach and P. Grosse, eds, Springer, New York (1979), p. 178.

    Chapter  Google Scholar 

  45. G. Lucovsky and C.K. Wong, J. Non-Crystalline Solids 75: 51 (1985).

    Article  ADS  Google Scholar 

  46. G. Lucovsky and C.K. Wong, J. Phil Mag. 52: 331 (1985).

    Article  Google Scholar 

  47. M. Misawa and K. Suzuki, J. Phys. Soc. Jpn. 44: 1612 (1978).

    Article  ADS  Google Scholar 

  48. R. Bellissent, Nucl. Instr. and Meth. 199: 289 (1982).

    Article  Google Scholar 

  49. D. Hohl and R.O. Jones, Phys. Rev. B 43: 3856 (1991).

    Article  ADS  Google Scholar 

  50. D.E.C. Corbridge, Phosphorus. An Outline of its Chemistry, Biochemistry and Technology, Elsevier, Amsterdam (1985).

    Google Scholar 

  51. S.R. Elliott, J.C. Dore, and E. Marseglia, J. Physique. Colloque C8. 46, 349 (1985).

    Google Scholar 

  52. H. Krebs and H.U. Gruber, Z. Naturforsch. Teil A 22: 96 (1967).

    ADS  Google Scholar 

  53. H.U. Beyeler and S. Veprek, Phil. Mag. B 41: 327 (1980).

    Article  Google Scholar 

  54. G. Fasol, M. Cardona, W. Hönle, and H.G. von Schnering, Solid State Commun. 52, 307 (1984).

    Article  ADS  Google Scholar 

  55. D.J. Olego, J.A. Baumann, and R. Schachter, Solid State Commun. 53: 905 (1985).

    Article  ADS  Google Scholar 

  56. T.P. Martin, Z. Phys. D 3: 221 (1986).

    Article  ADS  Google Scholar 

  57. R.O. Jones and D. Hohl, J. Chem. Phys. 92: 6710 (1990).

    Article  ADS  Google Scholar 

  58. R.O. Jones and G. Seifert, J. Chem. Phys. 96: 7564 (1992).

    Article  ADS  Google Scholar 

  59. P. Ballone and R.O. Jones, J. Chem. Phys. 100: (1994), in press.

    Google Scholar 

  60. H. Thurn and H. Krebs, Acta Cryst. B 25: 125 (1969).

    Article  Google Scholar 

  61. P.E. Eaton and T.W. Cole, Jr., J. Am. Chem. Soc. 86:. 962, 3157 (1964).

    Article  Google Scholar 

  62. L. Cassar, P.E. Eaton, and J. Halpern, J. Am. Chem. Soc. 92: 6366 (1970).

    Article  Google Scholar 

  63. R. Janoschek, Chem. Ber. 125: 2687 (1992).

    Article  Google Scholar 

  64. M. Häser, U. Schneider, and R. Ahlrichs, J. Am. Chem. Soc. 114: 9551 (1992).

    Article  Google Scholar 

  65. See, for example, A.D. Becke, J. Chem. Phys. 96: 2155 (1992).

    Article  ADS  Google Scholar 

  66. B.G. Johnson, P.M.W. Gill, and J.A. Pople, J. Chem. Phys. 97: 7846 (1992).

    Article  ADS  Google Scholar 

  67. D. Hohl and R.O. Jones, Phys. Rev. B 45: 8995 (1992).

    Article  ADS  Google Scholar 

  68. D.E.C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier, Amsterdam (1974).

    Google Scholar 

  69. R.O. Jones and G. Seifert, J. Chem. Phys. 96: 2942 (1992).

    Article  ADS  Google Scholar 

  70. See, for example, R.S. Mulliken, J. Phys. Chem. 56: 295 (1952) and references therein.

    Article  Google Scholar 

  71. R.O. Jones, Phys. Rev. Lett. 67: 224 (1991).

    Article  ADS  Google Scholar 

  72. R.O. Jones, J. Chem. Phys. 99: 1194 (1993).

    Article  ADS  Google Scholar 

  73. M.F. Jarrold, J.E. Bower, and J.S. Kraus, J. Chem. Phys. 86: 3876 (1987) [n = 3–26].

    Article  ADS  Google Scholar 

  74. L. Hanley, S.A. Ruatta, and S.L. Anderson, J. Chem. Phys. 87: 260 (1987) [n = 2–7].

    Article  ADS  Google Scholar 

  75. G. Ganteför, M. Gausa, K.H. Meiwes-Broer, and H.O. Lutz, Z. Phys. D 9: 253 (1988) [n = 3 − 14].

    Article  ADS  Google Scholar 

  76. K.J. Taylor, C.L. Pettiette, M.J. Craycraft, O. Chesnovsky, and R.E. Smalley, Chem. Phys. Lett. 152: 347 (1988) [n = 3–32].

    Article  ADS  Google Scholar 

  77. C.Y. Cha, G. Ganteför, and W. Eberhardt, J. Chem. Phys. 100 (1994), in press.

    Google Scholar 

  78. H.G. von Schnering and R. Nesper, Acta Chem. Scand. 45: 870 (1991).

    Article  Google Scholar 

  79. K.K. Sunil and K.D. Jordan, J. Phys. Chem. 92: 2774 (1988).

    Article  Google Scholar 

  80. C.W. Bauschlicher, Jr., H. Partridge, S.R. Langhoff, P.R. Taylor, and S.P. Walch, J. Chem. Phys. 86: 7007 (1987).

    Article  ADS  Google Scholar 

  81. U. Meier, S.D. Peyerimhoff, and F. Grein, Z. Phys. D 17: 209 (1990).

    Article  ADS  Google Scholar 

  82. M.F. Cai, T.P. Djugan, and V.E. Bondybey, Chem. Phys. Lett. 155: 430 (1989).

    Article  ADS  Google Scholar 

  83. V.A. Polukhin and M.M. Dzugotov, Phys. Met. Metall. 51: 50 (1981).

    Google Scholar 

  84. J. Hafner, J. Non-Crystalline Solids 117/118: 18 (1990).

    Article  ADS  Google Scholar 

  85. The multiplet averaged values are B 3.57 eV; Al 3.47 eV; Ga 4.71 eV; In 4.35 eV; Tl 5.64 eV. See C.E. Moore, Atomic Energy Levels, National Bureau of Standards Circular 467, USGPO, Washington. Vol. I (1949), Vol. II (1952), Vol. III (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, R.O. (1995). Molecules and Molecular Dynamics. In: Gross, E.K.U., Dreizler, R.M. (eds) Density Functional Theory. NATO ASI Series, vol 337. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9975-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9975-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9977-4

  • Online ISBN: 978-1-4757-9975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics