Molecules and Molecular Dynamics

  • R. O. Jones
Part of the NATO ASI Series book series (NSSB, volume 337)

Abstract

This Advanced Study Institute is devoted to the density functional (DF) formalism and its applications. In these lectures I shall discuss the part that DF theory has come to play in calculation of the structure — electronic and geometrical — of molecules, and the way the in which the coupling of DF calculations and molecular dynamics (MD) has widened our perspective on both aspects. Computer simulations will play an increasingly important role in improving our understanding of the properties of molecules, clusters, and bulk materials with complex structures. I shall focus here on methods for calculating the geometrical structures of such systems, the problems that must be faced, and ways of overcoming them. Although the combination of DF and MD schemes has some important advantages, it is by no means a panacea for all our problems in this area.

Keywords

Molecular Dynamic Simulated Annealing Bond Angle Dihedral Angle Radial Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Crick, in: What mad pursuit, Penguin, London (1988), p. 150.Google Scholar
  2. [2]
    R.O. Jones, J. Chem. Phys. 82: 325 (1985).ADSCrossRefGoogle Scholar
  3. [3]
    A. Cayley, Phil Mag. (4) 47: 444 (1874).Google Scholar
  4. A.C. Lunn and J.K. Senior, J. Phys. Chem. 33: 1027 (1929).CrossRefGoogle Scholar
  5. G. Polyá, Acta Math. 68: 145 (1937).CrossRefGoogle Scholar
  6. [4]
    M.R. Hoare and J.A. Mclnnes, Adv. Phys. 32: 791 (1983).ADSCrossRefGoogle Scholar
  7. [5]
    L.T. Wille and J. Vennik, J. Phys. A 18: L419, L1113 (1985).MathSciNetADSCrossRefGoogle Scholar
  8. [6]
    M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco (1979).MATHGoogle Scholar
  9. [7]
    S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science 220: 671 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  10. [8]
    R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61: 689 (1989).ADSCrossRefGoogle Scholar
  11. [9]
    R. Car and M. Parrinello, Phys. Rev, Lett. 55: 2471 (1985).ADSCrossRefGoogle Scholar
  12. [10]
    F. Stillinger, T.A. Weber, and R.A. LaViolette, J. Chem. Phys. 85: 6460 (1986).ADSCrossRefGoogle Scholar
  13. [11]
    R.O. Jones, Angew. Chem. 103: 647 (1991).CrossRefGoogle Scholar
  14. R.O. Jones, Angew. Chem. Int. Ed. Engl. 30: 630 (1991).CrossRefGoogle Scholar
  15. [12]
    K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York (1979).Google Scholar
  16. [13]
    F.H. Stillinger and T.A. Weber, J. Phys. Chem. 91: 4899 (1987).CrossRefGoogle Scholar
  17. [14]
    D. Hohl, R.O. Jones, R. Car, and M. Parrinello, J. Chem. Phys. 89: 6823 (1988).ADSCrossRefGoogle Scholar
  18. [15]
    P. Hohenberg and W. Kohn, Phys. Rev. 136: B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  19. [16]
    W. Kohn and L.J. Sham, Phys. Rev. 140: A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  20. [17]
    G.B. Bachelet, D.R. Hamann, and M. Schlüter, Phys. Rev. B 26: 4199 (1982).ADSCrossRefGoogle Scholar
  21. [18]
    R. Stumpf, X. Gonze, and M. Scheffler, Research Report, Fritz-Haber-Institut, Berlin (April, 1990), unpublished.Google Scholar
  22. [19]
    L. Verlet, Phys. Rev. 159: 2471 (1967).CrossRefGoogle Scholar
  23. [20]
    D. Hohl, R.O. Jones, R. Car, and M. Parrinello, Chem. Phys. Lett. 139: 540 (1987).ADSCrossRefGoogle Scholar
  24. [21]
    J. Donohue, The Structures of the Elements, Wiley, New York (1974), Chapters 8 [group Va] and 9 [group VIa].Google Scholar
  25. [22]
    R. Steudel, in: Studies in Inorganic Chemistry, Vol. 5, A. Müller and B. Krebs, eds., Elsevier, Amsterdam (1984).Google Scholar
  26. [23]
    R. Steudel and E.M. Strauss, in: The Chemistry of Inorganic Homo-and Heterocycles, Vol. 2, Academic, London (1987), p. 769.Google Scholar
  27. [24]
    H. Bitterer, ed., Schwefel: Gmelin Handbuch der Anorganischen Chemie, 8. Aufl., Ergänzungsband 3, Springer, Berlin (1980), p. 8.Google Scholar
  28. [25]
    R. Steudel, T. Sandow, and J. Steidel, Z. Naturforsch. Teil B 40: 594 (1985).Google Scholar
  29. [26]
    R. Steudel, Angew. Chem. 87: 683 (1975).CrossRefGoogle Scholar
  30. R. Steudel, Angew. Chem. Int. Edit. Engl. 14: 655 (1975).CrossRefGoogle Scholar
  31. R. Steudel, Z. Naturforsch. Teil B 38: 543 (1983).Google Scholar
  32. [27]
    R. Steudel, T. Sandow, and R. Reinhardt, Angew. Chem. 89: 757 (1983).CrossRefGoogle Scholar
  33. R. Steudel, Angew. Chem. Int. Edit. Engl. 16: 716 (1983).CrossRefGoogle Scholar
  34. [28]
    L. Pauling, Proc. Nat. Acad. Sci. USA 35: 495 (1949).ADSCrossRefGoogle Scholar
  35. [29]
    F. Tuinstra, Structural Aspects of the Allotropy of Sulphur and Other Divalent Elements, Delft (1967).Google Scholar
  36. [30]
    R.O. Jones and D. Hohl, J. Am. Chem. Soc. 112: 2590 (1990).CrossRefGoogle Scholar
  37. [31]
    J. Harris and R.O. Jones, Phys. Rev. A 19: 1813 (1979).ADSCrossRefGoogle Scholar
  38. [32]
    H. Bitterer, ed., Selenium: Gmelin Handbuch der Anorganischen Chemie, 8. Aufl., Ergänzungsband B2, Springer, Berlin Heidelberg New York (1984).Google Scholar
  39. [33]
    R.A. Zingaro and W.C. Cooper, eds, Selenium, Van Nostrand Reinhold, New York (1974).Google Scholar
  40. [34]
    E.H. Henninger, R.C. Buschert, and L. Heaton, J. Chem. Phys. 46: 586 (1967).ADSCrossRefGoogle Scholar
  41. [35]
    R. Kaplow, T.A. Rowe, and B.L. Averbach, Phys. Rev. 168: 1068 (1968).ADSCrossRefGoogle Scholar
  42. [36]
    H. Richter, J. Non-Crystalline Solids 8: 338 (1972).ADSGoogle Scholar
  43. [37]
    J. Robertson, Phil. Mag. 34: 13 (1976).ADSCrossRefGoogle Scholar
  44. [38]
    G. Lucovsky, in: The Physics of Selenium and Tellurium, E. Gerlach and P. Grosse, eds, Springer, New York (1979), p. 178.CrossRefGoogle Scholar
  45. [39]
    G. Lucovsky and C.K. Wong, J. Non-Crystalline Solids 75: 51 (1985).ADSCrossRefGoogle Scholar
  46. G. Lucovsky and C.K. Wong, J. Phil Mag. 52: 331 (1985).CrossRefGoogle Scholar
  47. [40]
    M. Misawa and K. Suzuki, J. Phys. Soc. Jpn. 44: 1612 (1978).ADSCrossRefGoogle Scholar
  48. [41]
    R. Bellissent, Nucl. Instr. and Meth. 199: 289 (1982).CrossRefGoogle Scholar
  49. [42]
    D. Hohl and R.O. Jones, Phys. Rev. B 43: 3856 (1991).ADSCrossRefGoogle Scholar
  50. [43]
    D.E.C. Corbridge, Phosphorus. An Outline of its Chemistry, Biochemistry and Technology, Elsevier, Amsterdam (1985).Google Scholar
  51. [44]
    S.R. Elliott, J.C. Dore, and E. Marseglia, J. Physique. Colloque C8. 46, 349 (1985).Google Scholar
  52. [45]
    H. Krebs and H.U. Gruber, Z. Naturforsch. Teil A 22: 96 (1967).ADSGoogle Scholar
  53. [46]
    H.U. Beyeler and S. Veprek, Phil. Mag. B 41: 327 (1980).CrossRefGoogle Scholar
  54. [47]
    G. Fasol, M. Cardona, W. Hönle, and H.G. von Schnering, Solid State Commun. 52, 307 (1984).ADSCrossRefGoogle Scholar
  55. [48]
    D.J. Olego, J.A. Baumann, and R. Schachter, Solid State Commun. 53: 905 (1985).ADSCrossRefGoogle Scholar
  56. [49]
    T.P. Martin, Z. Phys. D 3: 221 (1986).ADSCrossRefGoogle Scholar
  57. [50]
    R.O. Jones and D. Hohl, J. Chem. Phys. 92: 6710 (1990).ADSCrossRefGoogle Scholar
  58. R.O. Jones and G. Seifert, J. Chem. Phys. 96: 7564 (1992).ADSCrossRefGoogle Scholar
  59. [51]
    P. Ballone and R.O. Jones, J. Chem. Phys. 100: (1994), in press.Google Scholar
  60. [52]
    H. Thurn and H. Krebs, Acta Cryst. B 25: 125 (1969).CrossRefGoogle Scholar
  61. [53]
    P.E. Eaton and T.W. Cole, Jr., J. Am. Chem. Soc. 86:. 962, 3157 (1964).CrossRefGoogle Scholar
  62. [54]
    L. Cassar, P.E. Eaton, and J. Halpern, J. Am. Chem. Soc. 92: 6366 (1970).CrossRefGoogle Scholar
  63. [55]
    R. Janoschek, Chem. Ber. 125: 2687 (1992).CrossRefGoogle Scholar
  64. [56]
    M. Häser, U. Schneider, and R. Ahlrichs, J. Am. Chem. Soc. 114: 9551 (1992).CrossRefGoogle Scholar
  65. [57]
    See, for example, A.D. Becke, J. Chem. Phys. 96: 2155 (1992).ADSCrossRefGoogle Scholar
  66. B.G. Johnson, P.M.W. Gill, and J.A. Pople, J. Chem. Phys. 97: 7846 (1992).ADSCrossRefGoogle Scholar
  67. [58]
    D. Hohl and R.O. Jones, Phys. Rev. B 45: 8995 (1992).ADSCrossRefGoogle Scholar
  68. [59]
    D.E.C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier, Amsterdam (1974).Google Scholar
  69. [60]
    R.O. Jones and G. Seifert, J. Chem. Phys. 96: 2942 (1992).ADSCrossRefGoogle Scholar
  70. [61]
    See, for example, R.S. Mulliken, J. Phys. Chem. 56: 295 (1952) and references therein.CrossRefGoogle Scholar
  71. [62]
    R.O. Jones, Phys. Rev. Lett. 67: 224 (1991).ADSCrossRefGoogle Scholar
  72. R.O. Jones, J. Chem. Phys. 99: 1194 (1993).ADSCrossRefGoogle Scholar
  73. [63]
    M.F. Jarrold, J.E. Bower, and J.S. Kraus, J. Chem. Phys. 86: 3876 (1987) [n = 3–26].ADSCrossRefGoogle Scholar
  74. L. Hanley, S.A. Ruatta, and S.L. Anderson, J. Chem. Phys. 87: 260 (1987) [n = 2–7].ADSCrossRefGoogle Scholar
  75. [64]
    G. Ganteför, M. Gausa, K.H. Meiwes-Broer, and H.O. Lutz, Z. Phys. D 9: 253 (1988) [n = 3 − 14].ADSCrossRefGoogle Scholar
  76. K.J. Taylor, C.L. Pettiette, M.J. Craycraft, O. Chesnovsky, and R.E. Smalley, Chem. Phys. Lett. 152: 347 (1988) [n = 3–32].ADSCrossRefGoogle Scholar
  77. [65]
    C.Y. Cha, G. Ganteför, and W. Eberhardt, J. Chem. Phys. 100 (1994), in press.Google Scholar
  78. [66]
    H.G. von Schnering and R. Nesper, Acta Chem. Scand. 45: 870 (1991).CrossRefGoogle Scholar
  79. [67]
    K.K. Sunil and K.D. Jordan, J. Phys. Chem. 92: 2774 (1988).CrossRefGoogle Scholar
  80. [68]
    C.W. Bauschlicher, Jr., H. Partridge, S.R. Langhoff, P.R. Taylor, and S.P. Walch, J. Chem. Phys. 86: 7007 (1987).ADSCrossRefGoogle Scholar
  81. [69]
    U. Meier, S.D. Peyerimhoff, and F. Grein, Z. Phys. D 17: 209 (1990).ADSCrossRefGoogle Scholar
  82. [70]
    M.F. Cai, T.P. Djugan, and V.E. Bondybey, Chem. Phys. Lett. 155: 430 (1989).ADSCrossRefGoogle Scholar
  83. [71]
    V.A. Polukhin and M.M. Dzugotov, Phys. Met. Metall. 51: 50 (1981).Google Scholar
  84. J. Hafner, J. Non-Crystalline Solids 117/118: 18 (1990).ADSCrossRefGoogle Scholar
  85. [72]
    The multiplet averaged values are B 3.57 eV; Al 3.47 eV; Ga 4.71 eV; In 4.35 eV; Tl 5.64 eV. See C.E. Moore, Atomic Energy Levels, National Bureau of Standards Circular 467, USGPO, Washington. Vol. I (1949), Vol. II (1952), Vol. III (1958).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. O. Jones
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations