Influence of pH and Partial Oxygen Pressure on the N2O-N to N2 Ratio of Denitrification

  • J. G. G. Ottow
  • I. Burth-Gebauer
  • M. E. El Demerdash
Part of the NATO Conference Series book series (NATOCS, volume 9)


It has been widely accepted that the relative amount of N2O from soils may be favoured by acid rather than neutral or alcaline conditions, and/or by increasing the oxygen tension of the system concerned. The former observation has been ascribed to the relative sensitivity of N2O-reductase to an increased proton activity, whereas the latter suggests that O2 becomes increasingly a competitive electron acceptor to nitrate resulting in an incomplete denitrification. Interest in conditions that affect the production of N2O has been stimulated by the concern about the possible destruction of stratospheric ozone as a result of the increased use in mineral nitrogen fertilizers. In soil and waters denitrification losses depend on amount and type of energy source, temperature, oxygen diffusion rate, nitrate availability and pH, all factors that are subject to continuous changes and interactions. However, among these factors, pH and oxygen partial pressure (a function of moisture tension) are thought to be key factors that enhance the relative amounts of N2O particularly at high amounts of nitrate (Focht, 1974; Knowles, 1981, 1982). Estimates of the total quantity of gaseous nitrogen (N2O-N + N2) released annually from soil and water sources are still scattered and tentative, but in situ field measurements of N2O (with and without acetylene inhibition) will contribute increasingly to the knowledge of denitrification (Focht, 1978; Knowles, 1982). Results from the acetylene inhibition technique, however, should be considered with care, since C2H2 may reach only a part of the N2O-reductases (Yeomans and Beauchamp, 1978), partially inhibit N2O-reductase itself (Lensi and Chalamet, 1979; 1982), accelerate the reduction of nitrate into N2O (Lensi and Chalamet, 1982) or even stimulate denitrification by acting as an energy source (Yeomans and Beauchamp, 1982; Haider et al., 1983). Further, N2O release from soil varies with time, climatic and envrionmental conditions (Letey et al., 1980; Ottow and Fabig, 1984) which make long-term measurements inevitable. Before accurate and reliable predictions are made on the possible effects of agricultural fertilizer practices, more basic information is needed on (1) the long-term rate of N20 production (relative to total denitrification) from both natural and fertilized soils and (2) on those environmental conditions that determine essentially incomplete transformation of nitrate into N20. In order to elucidate the effect of one single ecological factor on the relative amount of N20, model experiments under defined conditions are quite appropriate. In the present paper, such model experiments were made both with soils and liquid cultures in order to determine the role of pH and p02 on the relative amounts of N20 in the presence of high nitrate concentrations.


Nitrate Concentration Fusarium Solani High Nitrate Concentration Oxygen Diffusion Rate Decomposable Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bleakley, B.H., and Tiedje, J.M., 1982, Nitrous oxide production by organisms other than nitrifiers or denitrifiers, Appl. Environ. Microbiol. 44: 1342.Google Scholar
  2. Burth, I., Benckiser, G., and Ottow, J.C.G., 1982, N20-Freisetzung aus Nitrit (Denitrifikation) durch ubiquitäre Pilze unter aeroben Bedingungen, Die Naturwiss. 69: 598.ADSCrossRefGoogle Scholar
  3. Burth, I., and Ottow, J.C.G., 1982, Stickstoffentgasung bei verschiedenen denitrifizierenden Bakterien und Fusarium solani in Abhungigkeit von der Wasserstoff-Ionenkonzentration (pH), Landw. Forsch., Sonderh. 38: 655.Google Scholar
  4. Burth, I. and Ottow, J.C.G., 1983, Influence of pH on the production of N20 and N2 by different denitrifying bacteria and Fusa-rium solani, Ecol. Bull. (Stockholm) 35:207.Google Scholar
  5. Cho, C.M., and Mills, J.G., 1979, Kinetic formulation of the denitri- fication process in soil, Can. J. Soil Sci. 59: 249.Google Scholar
  6. Dintscheff, D., and Badjoff, K., 1977, Gasförmige N-Verluste im Boden durch Denitrifizierung). II. Gasförmige Verluste in Abhängigkeit vom Bodentyp, Agrochimica 21: 408.Google Scholar
  7. El Demerdash, M.E., and Ottow, J.C.G., 1983, Einfluss einer hohen Nitratdungung auf Kinetic und Gaszusammensetzung der Denitrifikation in unterschiedlichen Böden, Z. Pflanzenernaehr. Bodenkd., 146: 138.Google Scholar
  8. Fabig, W., and Ottow, J.C.G., 1979, Isolierung und Identifizierung neuer denitrifizierender Bakterien aus einer Modellkläranlage mit anaeroben Festbettreaktoren, Arch. Hydrobiol. 85:372.Google Scholar
  9. Fabig, W., Ottow, J.C.G.,, and Muller, F., 1980, Failure of denitrifying bacteria to utilize benzoic acid under anaerobic conditions with nitrate as the only electron acceptor, Eur. J. Appl. Microbiol. Biotechn. 9: 133.Google Scholar
  10. Firestone, M.K., and Tiedje, J.M., 1979, Temporal change in nitrous oxide and dinitrogen from denitrification following onset of anaerobiosis, Appl. Environ. Microbiol. 38: 673.Google Scholar
  11. Focht, D.D., 1974, The effect of temperature, pH and aeration on the production of nitrous oxide and gaseous nitrogen: A zero order kinetic model, Soil Sci. 118: 173.CrossRefGoogle Scholar
  12. Focht, D.D., 1978, Methods for analysis of denitrification in soils, in: “Nitrogen in the environment”, vol. 2, D.R. Niels’n and J.G. MacDonald, eds., Academic Press, New York, San Francisco, London.Google Scholar
  13. Garcia, J.L., 1973, Séquence des produits formés au cours de la dénitrification dans les sols de rizières du Sénégal, Ann. Microbiol. (Inst. pasteur) 124B: 351.Google Scholar
  14. Greenberg, E.P., and Becker, G.E., 1977, Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads, Can. J. Microbiol. 23: 903.Google Scholar
  15. Haider, K., Mosier, E.R., and Heinemeyer, 0, 1983, Side effects of acetylene on the conversion of nitrate in soil, Z. Pflanzenernaehr. Bodenkd., 146: 623.Google Scholar
  16. Knowles, R., 1981, Denitrification, Ecol. Bull. (Stockholm) 33: 315.Google Scholar
  17. Knowles, R., 1982, Denitrification, Microbiol. Rev., 46: 43.Google Scholar
  18. Kohl, D.H., Vithayathil, F., Whitlow, P., Shearer, G.,and Chien, S.H., 1976, Denitrification kinetics in soil systems: the significance of good fits of data to mathematical forms, Soil Sci. Soc. Am. J., 40:249.Google Scholar
  19. Lensi, R., and Chalamet, A., 1979, Relation nitrate-oxyde nitreux lors de la dénitrification dans un sol hydromorphe, Rev. Ecol. Biol. Sol 16: 315.Google Scholar
  20. Lensi, R., and Chalamet, A., 1982, Denitrification in waterlogged soils: In situ temperature-dependent variations, Soil Biol. Biochem., 14: 51.Google Scholar
  21. Letey, J., Valoras, N., Hadas, A., and Focht, D.D., 1980, Effect of air-filled porosity, nitrate concentration, and time on the ratio of N20/N2-evolution during denitrification, J. Environ. Qal. 9: 227.CrossRefGoogle Scholar
  22. Limner, A.W., Steele, K.W., and Wilson, A.T., 1982, Direct field measurement of N2 and N20 evolution from soil, J. Soil. Sci. 33:499.Google Scholar
  23. MacGregor, A.N., 1972, Gaseous losses of nitrogen from freshly wetted desert soils, Soil. Sci. Soc. Am. Proc. 36: 594.Google Scholar
  24. Moretti, E., Leofanti, G., Andreazza, D., and Giordano, N., 1974, Gas chromatographic separation of effluent from the ammonia oxidation reaction: 02, N2, N20, NO2’ NH3, and H20, J. Gas Chrom., Sci., 12: 64.Google Scholar
  25. Nicholas, D.J.D., and Nason, A., 1957, Determination of nitrate and nitrite, in: “Methods in Enzymology”, vol. 3, Academic Press, New York, London.Google Scholar
  26. Ottow, J.C.G., and El Demerdash, M.E., 1983, Einfluss der WasserstoffIonenkonzentrat ion (pH = 4), des Sauerstoff-Partialdruckes und der N20-Spannung auf die Denitrifikationskapazität verschiedener Böden, Landw. Forsch., 36: 270.Google Scholar
  27. Ottow, J.C.G., and Fabig, W., 1984, Influence of oxygen aeration on denitrification and redox level in different bacterial batch cultures, in: “Proc. 6th Intern. Symp. Environ. Biogeochem.” (ISEB), Santa Fe, USA (in press).Google Scholar
  28. Robinson, J.B.D., van Allen, M. and Gacoka, P., 1959, The determination of soil nitrates with a brucin reagent, Analyst 84: 635.Google Scholar
  29. Rosswall, T., 1980, Microbiological nitrous-oxide production: Implications for the global nitrogen cycle, in: “Biogeochemistry of ancient and modern environments. Proc. Fourth Intern. Symp. Environ. Biogeochem.” (ISEB), Canberra, 1979, P.A. Trudingen and M.R. Walter, eds., Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  30. Waring, S.A., and Gilliam, J.W., 1983, The effect of acidity on nitrate reduction and denitrification in lower coastal plain soils, Soil Sci. Soc. Am. J., 47: 246.Google Scholar
  31. Wilhite, W.F., and Hollis, D.L., 1968, The use of porous-polymer beads for analysis of the Martian atmosphere, J. Gas Chromat. 6: 84.Google Scholar
  32. Yeomans, J.C., and Beauchamp, E.G., 1978, Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene, Soil Biol. Biochem. 10:517.Google Scholar
  33. Yeomans, J.C., and Beauchamp, E.G., 1982, Acetylene as a possible substrate in the denitrification process, Can. J. Soil Sci. 62: 139.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. G. G. Ottow
    • 1
  • I. Burth-Gebauer
    • 1
  • M. E. El Demerdash
    • 1
  1. 1.Institut für Bodenkunde und StandortslehreUniversität HohenheimStuttgart-70 (Hohenheim)Germany

Personalised recommendations