Skip to main content

Influence of pH and Partial Oxygen Pressure on the N2O-N to N2 Ratio of Denitrification

  • Chapter
Denitrification in the Nitrogen Cycle

Part of the book series: NATO Conference Series ((E,volume 9))

Abstract

It has been widely accepted that the relative amount of N2O from soils may be favoured by acid rather than neutral or alcaline conditions, and/or by increasing the oxygen tension of the system concerned. The former observation has been ascribed to the relative sensitivity of N2O-reductase to an increased proton activity, whereas the latter suggests that O2 becomes increasingly a competitive electron acceptor to nitrate resulting in an incomplete denitrification. Interest in conditions that affect the production of N2O has been stimulated by the concern about the possible destruction of stratospheric ozone as a result of the increased use in mineral nitrogen fertilizers. In soil and waters denitrification losses depend on amount and type of energy source, temperature, oxygen diffusion rate, nitrate availability and pH, all factors that are subject to continuous changes and interactions. However, among these factors, pH and oxygen partial pressure (a function of moisture tension) are thought to be key factors that enhance the relative amounts of N2O particularly at high amounts of nitrate (Focht, 1974; Knowles, 1981, 1982). Estimates of the total quantity of gaseous nitrogen (N2O-N + N2) released annually from soil and water sources are still scattered and tentative, but in situ field measurements of N2O (with and without acetylene inhibition) will contribute increasingly to the knowledge of denitrification (Focht, 1978; Knowles, 1982). Results from the acetylene inhibition technique, however, should be considered with care, since C2H2 may reach only a part of the N2O-reductases (Yeomans and Beauchamp, 1978), partially inhibit N2O-reductase itself (Lensi and Chalamet, 1979; 1982), accelerate the reduction of nitrate into N2O (Lensi and Chalamet, 1982) or even stimulate denitrification by acting as an energy source (Yeomans and Beauchamp, 1982; Haider et al., 1983). Further, N2O release from soil varies with time, climatic and envrionmental conditions (Letey et al., 1980; Ottow and Fabig, 1984) which make long-term measurements inevitable. Before accurate and reliable predictions are made on the possible effects of agricultural fertilizer practices, more basic information is needed on (1) the long-term rate of N20 production (relative to total denitrification) from both natural and fertilized soils and (2) on those environmental conditions that determine essentially incomplete transformation of nitrate into N20. In order to elucidate the effect of one single ecological factor on the relative amount of N20, model experiments under defined conditions are quite appropriate. In the present paper, such model experiments were made both with soils and liquid cultures in order to determine the role of pH and p02 on the relative amounts of N20 in the presence of high nitrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bleakley, B.H., and Tiedje, J.M., 1982, Nitrous oxide production by organisms other than nitrifiers or denitrifiers, Appl. Environ. Microbiol. 44: 1342.

    Google Scholar 

  • Burth, I., Benckiser, G., and Ottow, J.C.G., 1982, N20-Freisetzung aus Nitrit (Denitrifikation) durch ubiquitäre Pilze unter aeroben Bedingungen, Die Naturwiss. 69: 598.

    Article  ADS  Google Scholar 

  • Burth, I., and Ottow, J.C.G., 1982, Stickstoffentgasung bei verschiedenen denitrifizierenden Bakterien und Fusarium solani in Abhungigkeit von der Wasserstoff-Ionenkonzentration (pH), Landw. Forsch., Sonderh. 38: 655.

    Google Scholar 

  • Burth, I. and Ottow, J.C.G., 1983, Influence of pH on the production of N20 and N2 by different denitrifying bacteria and Fusa-rium solani, Ecol. Bull. (Stockholm) 35:207.

    Google Scholar 

  • Cho, C.M., and Mills, J.G., 1979, Kinetic formulation of the denitri- fication process in soil, Can. J. Soil Sci. 59: 249.

    Google Scholar 

  • Dintscheff, D., and Badjoff, K., 1977, Gasförmige N-Verluste im Boden durch Denitrifizierung). II. Gasförmige Verluste in Abhängigkeit vom Bodentyp, Agrochimica 21: 408.

    Google Scholar 

  • El Demerdash, M.E., and Ottow, J.C.G., 1983, Einfluss einer hohen Nitratdungung auf Kinetic und Gaszusammensetzung der Denitrifikation in unterschiedlichen Böden, Z. Pflanzenernaehr. Bodenkd., 146: 138.

    Google Scholar 

  • Fabig, W., and Ottow, J.C.G., 1979, Isolierung und Identifizierung neuer denitrifizierender Bakterien aus einer Modellkläranlage mit anaeroben Festbettreaktoren, Arch. Hydrobiol. 85:372.

    Google Scholar 

  • Fabig, W., Ottow, J.C.G.,, and Muller, F., 1980, Failure of denitrifying bacteria to utilize benzoic acid under anaerobic conditions with nitrate as the only electron acceptor, Eur. J. Appl. Microbiol. Biotechn. 9: 133.

    Google Scholar 

  • Firestone, M.K., and Tiedje, J.M., 1979, Temporal change in nitrous oxide and dinitrogen from denitrification following onset of anaerobiosis, Appl. Environ. Microbiol. 38: 673.

    Google Scholar 

  • Focht, D.D., 1974, The effect of temperature, pH and aeration on the production of nitrous oxide and gaseous nitrogen: A zero order kinetic model, Soil Sci. 118: 173.

    Article  Google Scholar 

  • Focht, D.D., 1978, Methods for analysis of denitrification in soils, in: “Nitrogen in the environment”, vol. 2, D.R. Niels’n and J.G. MacDonald, eds., Academic Press, New York, San Francisco, London.

    Google Scholar 

  • Garcia, J.L., 1973, Séquence des produits formés au cours de la dénitrification dans les sols de rizières du Sénégal, Ann. Microbiol. (Inst. pasteur) 124B: 351.

    Google Scholar 

  • Greenberg, E.P., and Becker, G.E., 1977, Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads, Can. J. Microbiol. 23: 903.

    Google Scholar 

  • Haider, K., Mosier, E.R., and Heinemeyer, 0, 1983, Side effects of acetylene on the conversion of nitrate in soil, Z. Pflanzenernaehr. Bodenkd., 146: 623.

    Google Scholar 

  • Knowles, R., 1981, Denitrification, Ecol. Bull. (Stockholm) 33: 315.

    Google Scholar 

  • Knowles, R., 1982, Denitrification, Microbiol. Rev., 46: 43.

    Google Scholar 

  • Kohl, D.H., Vithayathil, F., Whitlow, P., Shearer, G.,and Chien, S.H., 1976, Denitrification kinetics in soil systems: the significance of good fits of data to mathematical forms, Soil Sci. Soc. Am. J., 40:249.

    Google Scholar 

  • Lensi, R., and Chalamet, A., 1979, Relation nitrate-oxyde nitreux lors de la dénitrification dans un sol hydromorphe, Rev. Ecol. Biol. Sol 16: 315.

    Google Scholar 

  • Lensi, R., and Chalamet, A., 1982, Denitrification in waterlogged soils: In situ temperature-dependent variations, Soil Biol. Biochem., 14: 51.

    Google Scholar 

  • Letey, J., Valoras, N., Hadas, A., and Focht, D.D., 1980, Effect of air-filled porosity, nitrate concentration, and time on the ratio of N20/N2-evolution during denitrification, J. Environ. Qal. 9: 227.

    Article  Google Scholar 

  • Limner, A.W., Steele, K.W., and Wilson, A.T., 1982, Direct field measurement of N2 and N20 evolution from soil, J. Soil. Sci. 33:499.

    Google Scholar 

  • MacGregor, A.N., 1972, Gaseous losses of nitrogen from freshly wetted desert soils, Soil. Sci. Soc. Am. Proc. 36: 594.

    Google Scholar 

  • Moretti, E., Leofanti, G., Andreazza, D., and Giordano, N., 1974, Gas chromatographic separation of effluent from the ammonia oxidation reaction: 02, N2, N20, NO2’ NH3, and H20, J. Gas Chrom., Sci., 12: 64.

    Google Scholar 

  • Nicholas, D.J.D., and Nason, A., 1957, Determination of nitrate and nitrite, in: “Methods in Enzymology”, vol. 3, Academic Press, New York, London.

    Google Scholar 

  • Ottow, J.C.G., and El Demerdash, M.E., 1983, Einfluss der WasserstoffIonenkonzentrat ion (pH = 4), des Sauerstoff-Partialdruckes und der N20-Spannung auf die Denitrifikationskapazität verschiedener Böden, Landw. Forsch., 36: 270.

    Google Scholar 

  • Ottow, J.C.G., and Fabig, W., 1984, Influence of oxygen aeration on denitrification and redox level in different bacterial batch cultures, in: “Proc. 6th Intern. Symp. Environ. Biogeochem.” (ISEB), Santa Fe, USA (in press).

    Google Scholar 

  • Robinson, J.B.D., van Allen, M. and Gacoka, P., 1959, The determination of soil nitrates with a brucin reagent, Analyst 84: 635.

    Google Scholar 

  • Rosswall, T., 1980, Microbiological nitrous-oxide production: Implications for the global nitrogen cycle, in: “Biogeochemistry of ancient and modern environments. Proc. Fourth Intern. Symp. Environ. Biogeochem.” (ISEB), Canberra, 1979, P.A. Trudingen and M.R. Walter, eds., Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Waring, S.A., and Gilliam, J.W., 1983, The effect of acidity on nitrate reduction and denitrification in lower coastal plain soils, Soil Sci. Soc. Am. J., 47: 246.

    Google Scholar 

  • Wilhite, W.F., and Hollis, D.L., 1968, The use of porous-polymer beads for analysis of the Martian atmosphere, J. Gas Chromat. 6: 84.

    Google Scholar 

  • Yeomans, J.C., and Beauchamp, E.G., 1978, Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene, Soil Biol. Biochem. 10:517.

    Google Scholar 

  • Yeomans, J.C., and Beauchamp, E.G., 1982, Acetylene as a possible substrate in the denitrification process, Can. J. Soil Sci. 62: 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ottow, J.G.G., Burth-Gebauer, I., Demerdash, M.E.E. (1985). Influence of pH and Partial Oxygen Pressure on the N2O-N to N2 Ratio of Denitrification. In: Golterman, H.L. (eds) Denitrification in the Nitrogen Cycle. NATO Conference Series, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9972-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9972-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9974-3

  • Online ISBN: 978-1-4757-9972-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics