Microbiology of Denitrification and Other Processes Involving the Reduction of Oxygenated Nitrogenous Compounds

  • J. C. Germon
Part of the NATO Conference Series book series (NATOCS, volume 9)


Considerable changes take place in the energy metabolism of the soil microflora when oxygen becomes a limiting factor. Aerobic respiration is replaced by two other phenomena, namely fermentation and anaerobic respiration. In fermentation the transfer of electrons is associated with energy metabolism and occurs by means of internal redox reactions involving organic molecules and substrate-level phosphorylations. The Krebs cycle does not operate and growth is slow. In contrast, during anaerobic respiration oxygen is replaced by an electron acceptor of inorganic origin. In this type of respiration, which only occurs in procaryotes, the Krebs cycle functions in association with an electron transport chain which permits oxidative phosphorylation and more extensive growth than fermentation.


Nitrous Oxide Nitrate Reductase Nitrate Reduction Nitrite Reductase Ammonium Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balderston, W.L., Sherr, B., and Payne, W.J., 1976, Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus, Appl. Environ. Microbiol., 31: 504.Google Scholar
  2. Blackmer, A.M., Bremner, J.M., and Schmidt, E.L., 1980, Production of nitrous oxide by ammonia oxidizing chemoautotrophic microorganisms in soil, Appl. Environ. Microbiol., 40: 1060.Google Scholar
  3. Bollag, J.M., and Tung, G., 1972, Nitrous oxide release by soil fungi, Soil Biol. Biochem., 4: 271.Google Scholar
  4. Breitenbeck, G.A., Blackmer, A.M., and Bremner, J.M., 1980, Effects of different nitrogen fertilizers on emission of nitrous oxide from soil, Geophys. Res. Letters, 7: 85.Google Scholar
  5. Bremner, J.M., and Shaw, K., 1958, Denitrification in soil, J. Agric. Sci., 51: 22.Google Scholar
  6. Bremner, J.M., and Blackmer, A.M., 1979, Effects of acetylene and soil water content on emission of nitrous oxide from soils, Nature, 280: 380.ADSCrossRefGoogle Scholar
  7. Bremner, J.M., and Blackmer, A.M., 1981, Terrestrial nitrification as a source of atmospheric nitrous oxide, in: “Denitrification, nitrification and atmospheric nitrous oxide”, C.C. Delwiche, ed., John Wiley and Sons, New York.Google Scholar
  8. Bremner, J.M., Breitenbeck, G.A., and Blackmer, A.M., 1981a, Effect of nitrapyrin on emission of nitrous oxide from soil fertilizer with anhydrous ammonia, Geophys. Res. Letters, 8: 353.ADSCrossRefGoogle Scholar
  9. Bremner, J.M., Breitenbeck, G.A., and Blackmer, A.M., 1981b, Effects of anhydrous ammonia fertilization on emission of nitrous oxide from soils, J. Environ. Qual., 10: 77.Google Scholar
  10. Bryan, B.A., 1981, Physiology and biochemistry of denitrification, in: “Denitrification, nitrification and atmospheric nitrous oxide”, C.C. Delwiche, ed., John Wiley and Sons, New York.Google Scholar
  11. Buresh, R.J., and Patrick, W.H., 1981, Nitrate reduction to ammonium and organic nitrogen in the estuarine sediment, Soil Biol. Biochem., 13: 279.Google Scholar
  12. Caskey, W.H., and Tiedje, J.M., 1979, Evidence for Clostridia as agents of dissimilatory reduction of nitrate to ammonium in soils, Soil Sci. Soc. Am. J., 43: 391.Google Scholar
  13. Caskey, W.H., and Tiedje, J.M., 1980, The reduction of nitrate to ammonium by a Clostridium sp. isolated from soil, J. Gen. Microbiol., 119: 217.Google Scholar
  14. Corbet, A.S., 1935, The formation of hyponitrous acid as an intermediate compound in the biological or photochemical oxidation of ammonia to nitrous acid. II. Microbiological oxidation, Biochem. J., 29: 1086.Google Scholar
  15. Crutzen, P.J., and Ehhalt, D.H., 1976, Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer, Ambio, 6: 112.Google Scholar
  16. Daniel, R.M., Steele, K.W., and Limmer, A.W., 1980b, Denitrification by Rhizobia. A possible factor contributing to nitrogen losses from soils, New Zealand Agricult. Sci., 14: 109.Google Scholar
  17. Daniel, R.M., Smith, I.M., Phillip, J.A.D., Ruteliffe, M.D., Drozd, J.W., and Bull, A.T., 1980a, Anaerobic growth and denitrification by Rhizobium japonicum and other Rhizobia, J. Gen. Microbiol., 120: 517.CrossRefGoogle Scholar
  18. Daniel, R.M., Zimmer, A.W., Steele, K.W., and Smith, I.M., 1982, Aerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains, J. Gen. Microbiol., 128: 1811.Google Scholar
  19. Firestone, M.K., Firestone, R.B., and Tiedje, J.M., 1979, Nitric oxide as an intermediate in denitrification: evidence from nitrogen - 13 isotope exchange, Biochem. Biophys. Res. Comm., 91: 10.Google Scholar
  20. Freney, J.R., Denmead, 0.T., and Simpson, J.R., 1979, Nitrous oxide emission from soils at low moisture contents, Soil Biol. Biochem., 11: 167.Google Scholar
  21. Gamble, R.N., Betlach, M.R., and Tiedje, J.M., 1977, Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol., 33: 926.Google Scholar
  22. Garber, E.A.E., and Hollocher, T.C., 1981, 15N tracer studies on the role of NO in denitrification, J. Biol. Chem., 256: 5459.Google Scholar
  23. Garcia, J.L., 1977, Analyse des différents groupes composant la microflore dénitrifiante des sols de rizière du Sénégal, Ann. Microbiol. (Inst. Pasteur), 128A: 433.Google Scholar
  24. Garcia, J.L., 1978, Etude systématique de souches pures isolées, in: “Etude de la dénitrification dans les sols de rizières du Sénégal”, Thèse Doct. Sci., Marseille.Google Scholar
  25. Garcia, J.L., Roussos, S., and Bensoussan, M., 1981, Etude taxonomique de bactéries dénitrifiantes isolées sur benzoate dans les sols de rizières du Sénégal, Cah. ORSTOM, Sér. Biol., 43: 13.Google Scholar
  26. Gilbert, R.G., Lance, J.C., and Miller, J.B., 1979, Denitrifying bacteria populations and nitrogen removal is soil columns intermittently flooded with secondary sewage effluent, J. Environ. Qual., 8: 101.Google Scholar
  27. Hall, J.B., 1978, Nitrate-reducing bacteria, in: “Microbiology”, Schlessinger, ed., American Society for Microbiology, Washington (cited by Ingraham).Google Scholar
  28. Hasan, S.M., and Hall, J.B., 1975, The physiological function of nitrate reduction in Clostridium perfringens, J. Gen. Microbiol., 87: 120.Google Scholar
  29. Ingraham, J.L., 1981, Microbiology and genetics of denitrifiers, in: “Denitrification, nitrification, and atmospheric nitrous oxide”, C.C. Delwiche, ed., John Wiley and Sons, New York.Google Scholar
  30. Ishizawa, S., 1980, Note on nitrate reduction in Rhizobium, Soil Sci. Plant Nutr., 26: 447.Google Scholar
  31. Ishizawa, S., 1939, On the consumption of inorganic nitrogen by root nodule bacteria of leguminous plants, J. Soil Sci. Manure, Japan, 13:135 and 13: 560 (Cited by Ishizawa, 1980).Google Scholar
  32. Jacobson, S.N., and Alexander, M., 1980, Nitrate loss from soil in relation to temperature, carbon source, and denitrifiers populations, Soil Biol. Biochem., 12: 501.Google Scholar
  33. Kemp, J.D., Atkinson, D.E., Ehret, A., and Lazzarini, R.A., 1963, Evidence for identity of the NADP specific sulfite and nitrite reductases of E. coli, J. Biol. Chem., 238: 3466 (cited by Yordi and Ruoff).Google Scholar
  34. Koike, I., and Hattori, A., 1975, Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate, nitrite and nitrous oxidelimited conditions, J. Gen. Microbiol., 88: 11.CrossRefGoogle Scholar
  35. Koike, I., and Hattori, A., 1978, Denitrification and ammonia formation in anaerobic coastal sediments, Appl. Environ. Microbiol., 35: 278.Google Scholar
  36. Murphy, S.G., and Elkan, G.H., 1965, Nitrogen metabolism of some strains of Rhizobium japonicum having different nodulating capacities, Can. J. Microbiol., 11: 1039.Google Scholar
  37. Ndmmick, H., 1956, Investigation on denitrification in soil, Acta Agricult. Scand., 13: 195.Google Scholar
  38. Payne, W.J., 1973, Reduction of nitrogenous oxide by microorganisms, Bact. Rev., 37: 409Google Scholar
  39. Payne, W.J., Rowe, J.J., and Sherr, B.F., 1980, Denitrification: a plea for attention, in: “Nitrogen fixation”. I., W.E. Newton and W.H. Orme-Johnson, ed., Univ. Park Press, Baltimore.Google Scholar
  40. Pichinoty, F., 1973, La réduction bactérienne des composés oxygénés mineraux de l’azote, Bull. Inst. Pasteur, 71: 317.Google Scholar
  41. Ponnamperuma, F.N., 1972, The chemistry of submerged soils, Adv. Agron., 24: 29.CrossRefGoogle Scholar
  42. Rigaud, J., Bergersen, F.J., Turner, G.L., and Daniel, R.M., 1973, nitrate dependent anaerobic acetylene-reduction and nitrogen fixation by soyabean bacteroids, J. Gen. Microbiol., 77: 137.Google Scholar
  43. Richtie, G.A.F., and Nicholas, D.J.D., 1972, Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas Europaea, Biochem. J., 126: 1181 (cited by Bremner and Blackmer).Google Scholar
  44. Richtie, G.A.F., and Nicholas, D.J.D., 1974, The partical characterization of purified nitrite reductase and hydroxylamine oxidase from Nitrosomonas Europaea, Biochem. J., 138: 471 (cited by Bremner and Blackmer, 1981).Google Scholar
  45. Scott, D.B., Scott, D.A., and Döbereiner, 1979, Nitrogenase activity and nitrate respiration in Azospirillum sp., Arch. Microbiol. 121: 141.Google Scholar
  46. Sias, S.R., Stouthamer, A.H., and Ingraham, J.L., 1980, The assimilatory and dissimilatory nitrate reductases of Pseudomonas aeruginosa are encoded by different genes, J. Gen. Bact., 118: 229.Google Scholar
  47. Sikora, L.S., and Keeney, D.R., 1976, Evolution of sulfur - Thiobacillus denitrificans nitrate removal system, J. Environ. Qual. 5: 298.Google Scholar
  48. Smith, M.S., and Zimmerman, K., 1981, Nitrous oxide production by non denitrifying soil nitrate reducers, Soil Sci. Soc. Am. J., 45: 865.Google Scholar
  49. Sorensen, J., 1978, Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment, Appl. Environ. Microbiol., 35: 301.Google Scholar
  50. Stanford, G., Legg, J.0., Dzienia, S., and Simpson, E.C., 1975, Denitrification and associated nitrogen transformations in soils, Soil Sci, 120: 147.Google Scholar
  51. Stanier, R.Y., Palleroni, N.J., and Doudoroff, M., 1966, The aerobic Pseudomonas: a taxonomic study, J. Gen. Microbiol., 43: 159 (cited by Ingraham).Google Scholar
  52. Taylor, B.F., and Heeb, M.J., 1972, The anaerobic degradation of aromatic compounds by a denitrifying bacterium. Radioisotope and mutant studies, Arch. Microbiol., 83: 165.Google Scholar
  53. Tiedje, J.M., Caskey, N.V., Smith, M.S., Bleakley, B.H., and Firestone, R.B., 1979, Nitrous oxide production by bacteria that reduce nitrate to nitrite,1 gron. +~str., 165. Tiedje, J.M., 1981, Use of N and N in studies on the dissimilatory fate of nitrate, in: “Genetic engineering of symbiotic nitrogen fixation and conservation to fixed nitrogen”, Plenum Press, New York.Google Scholar
  54. Van Hartingsveldt, J., and Stouthamer, A.H., 1973, Mapping and characterization of mutants of Pseudomonas aeruginosa affected in nitrite respiration in aerobic or anaerobic growth, J. Gen. Microbiol., 74: 97.CrossRefGoogle Scholar
  55. Verhoeven, W., 1956, Studies on true dissimilatory nitrate reduction, Ant. van Leeuwen, J. Microbiol. Serol., 22: 385.CrossRefGoogle Scholar
  56. Volz, M.G., Belser, L.W., Ardakani, M.S., and Mc Laren, A.D., 1975, Nitrate reduction and associated microbial populations in a ponded handford sandy loam, J. Environ. Qual., 4: 99.Google Scholar
  57. Volz, M.G., 1977, Assessing two diagnostic methods for enumeration of nitrate reducing and denitrifying bacteria in soil-plant root association, Soil Sci. Soc. Am. J., 41: 337.Google Scholar
  58. Volz, M.G., and Starr, J.L., 1977, Nitrate dissimilation and population dynamics of denitrifying bacteria during short term continuous flow, Soil Sci. Soc. Am. J., 41: 891.Google Scholar
  59. Wijler, J., and Delwiche, C.C., 1954, Investigations on the denitrifying process in soil, Plant and Soil, 5: 155.CrossRefGoogle Scholar
  60. Yordy, D.M., and Ruoff, K.L., 1981, Dissimilatory nitrate reduction to ammonia, in: “Denitrification, nitrification and atmospheric nitrous oxide”, C.C. Delwiche, ed., John Wiley and Sons, New York.Google Scholar
  61. Yoshida, T., and Alexander, M., 1970, Nitrous oxide formation by Nitrosomonas Europaea and heterotrophic microorganisms, Soil Sci. Soc. Am. J., 34: 880.Google Scholar
  62. Yoshinari, T., and Knowles, R., 1976, Acetylen inhibition of nitrous oxide reduction by denitrifying bacteria, Biochem. Biophys. Res. Comm., 69: 705.Google Scholar
  63. Zablotowicz, R.M., Eskew, D.L., and Focht, D.D., 1978, Denitrification in Rhizobium, Can. J. Microbiol., 24: 757.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. C. Germon
    • 1
  1. 1.Laboratoire de Microbiologie des SolsINRADijon CedexFrance

Personalised recommendations