Acetylene Inhibition Technique: Development, Advantages, and Potential Problems

  • Roger Knowles
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 56)


The discovery in 1966 of the significant interaction of C2H2 with nitrogenase (reviewed in Burns and Hardy, 1975) was rapidly followed by the recognition that many other small double-or triple-bonded molecules such as N2O could act as substrates (Hardy and Knight, 1966). Interactions between C2H2, N2O, and nitrogenase have since been studied in more detail and N2O is in fact a poor substrate, with apparent Km values of 24 kPa for Klebsiella pneumoniae (Jensen and Burris, 1986) and 50 kPa for Azotobacter vinelandii (Liang and Burris, 1988) components in vitro.


Nitrous Oxide Acetylene Reduction Assay Methane Monooxygenases Heterotrophic Nitrification Desulfovibrio Desulfuricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins, A.M., and Knowles, R., 1984, Reduction of nitrous oxide by a soil Cytophaga in the presence of acetylene and sulfide, FEMS Microbiol. Lett. 23: 171.CrossRefGoogle Scholar
  2. Adkins, A.M., and Knowles, R., 1986, Denitrification by Cytophaga johnsonae strains and by a gliding bacterium able to reduce nitrous oxide in the presence of acetylene and sulfide, Can. J. Microbiol. 32: 421.CrossRefGoogle Scholar
  3. Balderston, W.L., Sherr, B., and Payne, W.J., 1976, Blockage by acetylene of nitrous oxide reduction in Pseudamonas perfectomarinus, Appl. Environ. Microbiol. 31: 504.PubMedGoogle Scholar
  4. Bédard, C., and Knowles, R., 1989, Physiology, biochemistry, and specific inhibitors of CH4, NH4, and CO oxidation by methanotrophs and nitrifiers, Microbiol. Rev. 53: 68.PubMedGoogle Scholar
  5. Bremner, J.M., and Blackmer, A.M., 1979, Effects of acetylene and soil water content on emission of nitrous oxide from soils, Nature 280: 380.CrossRefGoogle Scholar
  6. Brouzes, R., and Knowles, R., 1971, Inhibition of growth of Clostridium pasteurianum by acetylene: inplication for nitrogen fixation assay, Can. J. Microbiol. 17: 1483.PubMedCrossRefGoogle Scholar
  7. Burns, R.C., and Hardy, R.W.F., 1975, Nitrogen fixation in bacteria and higher plants, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  8. Chan, Y.K., Nelson, L.M., and Knowles, R. 1980, Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium, Can. J. Microbiol. 26: 1126.PubMedCrossRefGoogle Scholar
  9. Christensen, S., and Tiedje, J.M., 1988, Sub-parts-per-billion nitrate method: use of an N2O-producing denitrifier to convert NO3 or 15NO3 to N2O, Appl. Environ. Microbiol. 54: 1409.PubMedGoogle Scholar
  10. Culbertson, C.W., Zehnder, A.J.B., and Oremland, R.S., 1981, Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures, Appl. Environ. Microbiol. 41: 396.PubMedGoogle Scholar
  11. Bont, J.A.M., 1976, Bacterial degradation of ethylene and the acetylene reduction test, Can. J.Microbiol. 22: 1060.CrossRefGoogle Scholar
  12. Bont, J.A.M., and Mulder, E.G., 1976, Invalidity of the acetylene reduction assay in alkane-utilizing, nitrogen-fixing bacteria, Appl. Environ. Microbiol. 31: 640.PubMedGoogle Scholar
  13. Bont, J.A.M., and Peck, M.W., 1980, Metabolism of acetylene by Rhodococcus, Arch. Microbiol. 127: 99.CrossRefGoogle Scholar
  14. Catanzaro, J.B., Beauchamp, E.G., and Drury, C.F., 1987, Denitrification versus dissimilatory nitrate rediction in soil with alfalfa, straw, glucose and sulfide treatments, Soil Biol. Biochem. 19: 583.CrossRefGoogle Scholar
  15. Elleway, R.F., Sabine, J.R., and Nicholas, D.J.D., 1971, Acetylene reduction by rumen microflora, Arch. Mikrobiol. 76: 277.PubMedCrossRefGoogle Scholar
  16. Evans, D.G., Beauchamp, E., and Trevors, J.K., 1985, Sulfide alleviation of the acetylene inhibition of nitrous oxide reduction in soil, Appl. Environ. Microbiol. 49: 217.PubMedGoogle Scholar
  17. Fedorova, R.I., Milekhina, E.I., and Ilflyukhina, N.I., 1973, Evaluation of the method of “gas metabolism” for detecting extraterrestrial life. Identification of nitrogen-fixing microorganisms, Izv. Akad. Nauk, SSSR, Ser. Biol. 1973 (6): 797.Google Scholar
  18. Germon, J.C., 1980a, Etude quantitatie de la dénitrification biologique dans le sol à l’aide de l’acétyléne. I. Application a différents sols. Ann. Microbiol. (Inst. Pasteur) 131B: 69.Google Scholar
  19. Germon, J.C., 1980b, Etude quantitative de la dénitrification biologique dans le sol à l’aide de l’acétyléne. II. Evolution de l’effet inhibiteur de l’acétyléne sur la N2O-réductase; incidence de l’acétyléne sur la vitesse de dénitrification et sur la réorganisation de l’azote nitrique, Ann. Microbiol. (Inst. Pasteur) 131B: 81.Google Scholar
  20. Germon, J.C., and Knowles, R., 1988, Metabolism of acetylene and acetaldehyde by Rhodococcus rhodochrous, Can. J. Microbiol. 34: 242.PubMedCrossRefGoogle Scholar
  21. Haider, K., Mosier, A.R., and Heinemeyer, O., 1983, Side effects of acetylene on the conversion of nitrate in soil, Z. Pflanzenernaehr. Bodenk. 146: 623.CrossRefGoogle Scholar
  22. Hardy, R.W.F., and Knight, E., Jr., 1966, Reduction of N,O by biological N2-fixing systems, Biochem. Biophys. Res. Commun. 23: 409.PubMedCrossRefGoogle Scholar
  23. Hwang, J.C., Chen, C.H., and Burris, R.H., 1973, Inhibition of nitrogenasecatalyzed reductions, Biochim. Biophys. Acta. 292: 256.PubMedCrossRefGoogle Scholar
  24. Hyman, M.R., and Arp, D.J., 1987, Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms, Appl. Environ. Microbiol. 53: 298.PubMedGoogle Scholar
  25. Hyman, M.R., and Arp, D.J., 1988, Acetylene inhibition of metalloenzymes, Analyt. Biochem. 173: 207.PubMedCrossRefGoogle Scholar
  26. Hyman, M.R., and Wood, P.M., 1985, Suicidal labelling and inactivation of ammonia mono-oxygenase by acetylene, Biochem. J. 227: 719.PubMedGoogle Scholar
  27. Hynes, R.K., and Knowles, R., 1978, Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea, FEMS Microbiol. Lett. 4: 319.CrossRefGoogle Scholar
  28. Hynes, R.K., and Knowles, R., 1982, Effect of acetylene on autotrophic and heterotrophic nitrification, Can. J. Microbiol. 28: 334.CrossRefGoogle Scholar
  29. Hynes, R.K., and Knowles, R., 1984, Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH, and oxygen, Can. J. Microbiol. 30: 1397.CrossRefGoogle Scholar
  30. Jensen, B.B., and Burris, R.H., 1986, N2O as a substrate and as a competitive inhibitor of nitrogenase, Biochemistry 25: 1083.PubMedCrossRefGoogle Scholar
  31. Kanner, D., and Bartha, R., 1979, Growth of Nocardia rhodochrous on acetylene gas, J. Bacteriol. 139: 225.PubMedGoogle Scholar
  32. Kanner, D., and Bartha, R., 1982, Metabolism of acetylene by Nocardia rhodochrous, J. Bacteriol. 150: 989.PubMedGoogle Scholar
  33. Kaspar, H.F., 1982, Denitrification in marine sediment: measurement of capacity and estimate of in situ rate, Appl. Environ. Microbiol. 43: 522.PubMedGoogle Scholar
  34. Klemedtsson, L., Svensson, B.H., Lindberg, T., and Rosswall, T., 1977, The use of acetylene inhibition of nitrous oxide redictase in quantifying denitrification in soils, Swedish J. Agr. Res. 7: 179.Google Scholar
  35. Klemedtsson, L., Svensson, B.H., and Rossvall, T., 1988, A method of selective inhibition to destinguish between nitrification and denitrification as sources of nitrous oxide in soil, Biol. Fertil. Soils 6: 112.Google Scholar
  36. Knowles, R., 1979, Denitrification, acetylene reduction and methane metabolism in lake sediment exposed to acetylene, Appl. Environ. Microbiol. 38: 486.PubMedGoogle Scholar
  37. Knowles, R., 1982, Denitrification, Microbiol. Revs. 46: 43.Google Scholar
  38. Knowles, R., 1985, Some effects of inhibitors on nitrogen transformations, p. 363. In K.A. Malik, S.H.M. Naqvi, and M.I.H. Aleem (ed.), Nitrogen and the environment. Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan.Google Scholar
  39. Kristjansson, J.K., and Hollocher, T.C., 1980, First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization, J. Biol. Chem. 255: 704.PubMedGoogle Scholar
  40. Lensi, R., Gourbiere, F., and Josserand, A., 1985, Measurement of small amounts of nitrate in an acid soil by N2O production, Soil Biol. Biochem. 17: 733.CrossRefGoogle Scholar
  41. Liang, J., and Burris, R.H., 1988, Interactions among N2, N2O, and C2H2 as substrates and inhibitors of nitrogenase from Azotobacter vinelandii, Biochemistry 27: 6726.CrossRefGoogle Scholar
  42. Macgregor, A.N., and Keeney, D.R., 1973, Methane formation by lake sediments during in vitro incubation, Water Res. Bull. 9: 1153–1158.CrossRefGoogle Scholar
  43. Maldonado, J.M., Vargas, M.A., Maurino, S.G., and Aparicio, P.J. 1981. Inactivation by acetylene of spinach nitrate redictase, Biochim. Biophys. Acta. 661: 112.CrossRefGoogle Scholar
  44. Oremland, R.S., and Capone, D.G., 1988, Use of “specific” inhibitors in biogeochemistry and microbial ecology, Adv. Microb. Ecol. 10: 285.CrossRefGoogle Scholar
  45. Oremland, R.S., and Taylor, B,F., 1975, Inhibition of methanogenesis in marine sediments by acetylene and ethylene: validity of the acetylene reduction assay for anaerobic microcosms, Appl. Microbiol. 30: 707.PubMedGoogle Scholar
  46. Oremland, R.S., Umberger, C., Culbertson, C.W., and Smith, R.L., 1984, Denitrification in San Francisco Bay intertidal sediments, Appl. Environ. Microbiol. 47: 1106.PubMedGoogle Scholar
  47. Payne, W.J. 1984, Influence of acetylene on microbial and enzymatic assays, J. Microbiol. Methods 2: 117.CrossRefGoogle Scholar
  48. Payne, W.J., and Grant, M.IA., 1982, Influence of acetylene on growth of sulfate-respiring bacteria, Appl. Environ. Microbiol. 43: 727.PubMedGoogle Scholar
  49. Raimbault, M., 1975, Etude de l’influence inhibitrice de l’acétyléne sur la formation biologique du méthane dans un sol de riziére, Ann. Microbiol. (Inst. Pasteur), 126A: 247.Google Scholar
  50. Riester, J., Zumft, W.G., and Kroneck, P.M.H., 1989, Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme, Eur. J. Biochem. 178: 751.PubMedCrossRefGoogle Scholar
  51. Ryden, J.C., and Dawson, K.P., 1982, Evaluation of the acetylene-inhibition technique for the measurement of denitrification in grassland soils, J. Sci. Food Agric. 33: 1197.CrossRefGoogle Scholar
  52. Ryden, J.C., Lund, L.J., and Focht, D.D., 1979, Direct measurement of denitrification loss from soils: I. Laboratory evaluation of acetylene inhivition of nitrous oxide reduction, Soil Sci. Soc. Amer. J. 43: 104.CrossRefGoogle Scholar
  53. Schink, B., 1985, Fermlentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov., Arch. Microbiol. 142: 295.CrossRefGoogle Scholar
  54. Slater, J.M., and Capone, D.G., 1989, Nitrate requirement for acetylene inhibition of nitrous oxide reduction in marine sediments, Microbial Ecol. 17: 143.CrossRefGoogle Scholar
  55. Smith, L.A., Hill, S., and Yates, M.G., 1976, Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria, Nature 262: 209.PubMedCrossRefGoogle Scholar
  56. Smith, M.S., Firestone, M.K., and Tiedje, J.M., 1978, The acetylene inhibition method for short-term measurement of soil denitrification and its evaluation using nitrogen-13, Soil Sci. Soc. Amer. J. 42: 611.CrossRefGoogle Scholar
  57. Sorensen, J., 1978a, Occurrence of nitric and nitrous oxides in a coastal marine sediment, Appl. Environ. Microbiol. 36: 809.PubMedGoogle Scholar
  58. Sorensen, J., 1978h, Denitrification rates in a marine sediment as measured by the acetylene inhibition technique, Appl. Environ. Microbiol. 36: 139.PubMedGoogle Scholar
  59. Sorensen, J., Rasmussen, L.K., and Koike, I., 1987, Micromolar sulfide concentrations alleviate acetylene blockage of nitrous oxide reduction by denitrifying Pseudomonas fluorescens, Can. J. Microbiol. 33: 1001.CrossRefGoogle Scholar
  60. Sorensen, J., Tiedje, J.M., and Firestone, R.B., 1980, inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens, Appl. Environ. Microbiol. 39: 105.Google Scholar
  61. Sprott, G.D., Jarrell, K.F., Shaw, K.M., and Knowles, R. 1982, Acetylene as an inhibitor of methanogenic bacteria, J. Gen. Microbiol. 128: 2453.Google Scholar
  62. Tam, T.-Y., and Knowles, R., 1979, Effects of sulfide and acetylene on nitrous oxide reduction by soil and by Pseudomonas aeruginosa, Can. J. Microbiol. 25: 1133.PubMedCrossRefGoogle Scholar
  63. Tam, T.-Y., Mayfield, C.I., and Inniss, W.E., 1983 Aerobic acetylene utilization by stream sediment and isolated bacteria, Curr. Microbiol. 8: 165.CrossRefGoogle Scholar
  64. Teraguchi, S., and Hollocher, T.C., 1989, Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes, J. Biol. Chem. 264: 1972.PubMedGoogle Scholar
  65. Terry, R.E., and Duxbury, J.M., 1985, Acetylene decomposition in soils, Soil Sci. Soc. Amer. J. 49: 90.CrossRefGoogle Scholar
  66. Tibelius, K.H., and Knowles, R., 1984, Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide, and acetylene, J. Bacteriol. 160: 103.PubMedGoogle Scholar
  67. Topp, E., and Germon, J.-C., 1986, Acetylene metabolism and stimulation of denitrification in an agricultural soil, Appl. Environ. Microbiol. 52: 802.PubMedGoogle Scholar
  68. Tough, H.J., and Crush, J.R., 1979, Effect of grade of avetylene on ethylene production by white clover (Trifolium repens L.), during acetylene reduction assays of nitrogen fixation, N.Z. J. Agric. Res. 22: 581.CrossRefGoogle Scholar
  69. Trevors, J.T., and Beauchamp, E., 1985, Reduction of nitrous oxide (N2O) by a bacterial isolate in the presence of sulfide and acetylene, J. Microbiol. Methods 4: 127.CrossRefGoogle Scholar
  70. Van Raalte, C.D., and Patriquin, D.G., 1979, Use of the “acetylene blockage” technique for assaying denitrification in a salt marsh, Marine Biol. (Berlin) 52: 315.CrossRefGoogle Scholar
  71. Walter, H.M., Keeney, D.R., and Fillery, I.R., 1979, Inhibition of nitrification by acetylene, Soil Sci. Soc. Amer. J. 43: 195.CrossRefGoogle Scholar
  72. Watanabe, I., and de Guzman, M.R., 1980, Effect of nitrate on acetylene disappearance from anaerobic soil, Soil Biol. Biochem. 12: 193.CrossRefGoogle Scholar
  73. Yeomans, J.C., Beauchamp, E.G., 1978, Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene, Soil Biol. Biochem. 10: 517.CrossRefGoogle Scholar
  74. Yeomans, J.C., and Beauchamp, E.G., 1982a, Acetylene as a possible substrate in the denitrification process, Can. J. Soil Sci. 62: 139.CrossRefGoogle Scholar
  75. Yeomans, J.C., and Beauchamp, E.G., 1982b, Sulfur in acetylene inhibition of nitrous oxide reduction by soil microorganisms, Soil Sci. Soc. Amer. J. 46: 75.CrossRefGoogle Scholar
  76. Yoshinari, T., Hynes, R., and Knowles, R., 1977, Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil, Soil Biol. Biochem. 9: 177.CrossRefGoogle Scholar
  77. Yoshinari, T., and Knowles, R., 1976, Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria, Biochem. Biophys. Res. Commun. 69: 705.PubMedCrossRefGoogle Scholar
  78. Zumft, W.G., and Matsubara, T., 1982, A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide resperation in Pseudomonas perfectomarinus, FEBS Letters. 148: 107.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Roger Knowles
    • 1
  1. 1.Macdonald College of McGill UniversityCanada

Personalised recommendations