Skip to main content

Flux of NOx between Soil and Atmosphere: Importance and Soil Microbial Metabolism

  • Chapter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 56))

Abstract

Nitric oxide and nitrogen dioxide (NO + NO2 = NOx) are trace gases which occur only in amounts of less than 1 ppbv in the clean atmosphere. A comparison of the standard redox potentials of NO and NO2 among other biologically relevant nitrogen species is given in Table 5. A comparison of the atmospheric abundance, life time, and major sources and sinks is given in Table 1. The latter data are compiled from SCOPE reports (Söderlund and Svensson, 1976; Crutzen, 1983). Compared to other atmospheric nitrogen compounds the reactivity of NOx is quite large and thus, relatively large fluxes are required to maintain even small atmospheric mixing ratios. On the other hand, even small variations in fluxes result in large variations in the atmospheric mixing ratios. Since atmospheric NOx plays a key role in the chemistry of the atmosphere, the knowledge of the temporal and spatial distribution of sources and sinks of NOx are extremely important for atmospheric models. The role of soils and of microbial denitrification for NOx exchange between terrestrial ecosystems and the atmosphere is presently very uncertain and thus of special interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, I.C., and Levine, J.S., 1986, Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers, Appl. Environ. Microbiol., 51: 938–945.

    CAS  Google Scholar 

  • Anderson, I.C., and Levine, J.S., 1987, Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide, J. Geophs. Res., 92: 965–976.

    Article  CAS  Google Scholar 

  • Anderson, I.C., Levine, J.S., Poth, M.A., and Riggan, P.J., 1988, Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning, J. Geophys. Res., 93: 3893–3898.

    Article  CAS  Google Scholar 

  • Averill, B.A., and Tieje, J.M., 1982, The chemical mechanism of microbial denitrification, FEBS Lett., 138: 8–12.

    Article  PubMed  CAS  Google Scholar 

  • Baumgärtner, M., Remde, A., Bock, E., and Conrad, R., 1990, Release of nitric oxide from building stones into the atmosphere, Atmos. Environ. 24B: 87–92.

    Google Scholar 

  • Bazylinski, D.A., and Blakemore, R.P., 1983, Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum, Appl. Environ. Microbiol., 46: 1118–1124.

    PubMed  CAS  Google Scholar 

  • Betlach, M.R., and Tiedje, J.M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., 42: 1074–1084.

    PubMed  CAS  Google Scholar 

  • Blackmer, A.M., Bremner, J.M., and Schmidt, E.L., 1980, Production of nitrous oxide by ammonia-oxidizing chemoautotrophic microorganisms in soil, Appl. Environ. Microbiol., 40: 1060–1066.

    PubMed  CAS  Google Scholar 

  • Blackmer, J.M., and Cerrato, M.E., 1986, Soil properties affecting formation of nitric oxide by chemical reaction of nitrite, Soil Sci. Soc. Am. J., 50: 1215–1218.

    Article  CAS  Google Scholar 

  • Bremner, J.M., Blackmer, A.M., and Waring, S.A., 1980, Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils, Soil Biol. Biochem., 12: 263–269.

    Article  CAS  Google Scholar 

  • Bremner, J.M., and Blackmer, A.M., 1980, Mechanisms of nitrous oxide production in soils, in: “Biogeochemistry of ancient and modern environments”, P.A. Trudinger, M.R. Walter and B.J. Ralph, eds., p. 279–291, Springer, Berlin.

    Chapter  Google Scholar 

  • Carlson, C.A., and Ingraham, J.L., 1983, Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans, Appl. Environ. Microbiol., 45: 1247–1253.

    Google Scholar 

  • Castignetti, D., and Hollocher, T.C., 1984, Heterotrophic nitrification among denitrifiers, Appl. Environ. Microbiol., 47: 620–623.

    PubMed  CAS  Google Scholar 

  • Chalk, P.M., and Smith, C.J., 1983, Chemodenitrification. Dev. Plant Soil Sci. 9: 65–89.

    CAS  Google Scholar 

  • Cicerone, R.J., 1987, Changes in stratospheric ozone, Science, 237: 3542.

    Article  Google Scholar 

  • Colbourn, P., Ryden, J.C., and Dollard, G.J., 1987, Emission of NO from urine-treated pasture, Environ. pollut., 46: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Cole, J.A., 1988, Assimilatory and dissimilatory reduction of nitrate to ammonia, in: “The nitrogen an sulphur cycles”, J.A. Cole and S. Ferguson, eds., pp. 281–329. Cambridge University Press, Cambridge.

    Google Scholar 

  • Conrad, R., and Seiler, W., 1980, Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget, J. Geophys. Res., 85: 5493–5498.

    Article  CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1985, Destruction and production rates of carbon monoxide in arid soils under field conditions, in: “Planetary ecology”, D.E. Caldwell, J.A. Brierley, and C.L. Brierley, eds., p. 112–119. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Conrad, R., Seiler, W., and Bunse, G., 1983, Factors influencing the loss of fertilizer nitrogen into the atmosphere as N20, J. Geophys. Res., 88: 6709–6718.

    Article  CAS  Google Scholar 

  • Crutzen, P.J., 1979, The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Ann. Rev. Earth Planet. Sci., 7: 443–472.

    Article  CAS  Google Scholar 

  • Crutzen, P.J., 1983, Atmospheric interactions–Homogeneous gas reactions of C, N, and S containing compounds, in: “The major biogeochemical cycles and their interactions”, B. Bolin and R.B. Cook, eds., SCOPE 21, p. 67–114. Wiley, Chichester.

    Google Scholar 

  • Crutzen, P.J., Delany, A.C., Greenberg, J., Haagenson, P., Heidt, L., Lueb, R., Pollock, W., Seiler, W., Wartburg, A., and Zimmerman, P., 1985, Tropospheric chemical composition measurements in Brazil during the dry season, J. Atmos. Chem., 2: 233–256.

    Article  CAS  Google Scholar 

  • Dalton, H., 1977, Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain Bath, Arch. Microbiol., 114: 273–279

    Article  CAS  Google Scholar 

  • Davidson, E.A., and Swank, W.T., 1986, Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification, Appl. Environ. Microbiol., 52: 1287–1292.

    PubMed  CAS  Google Scholar 

  • Dean, J.V., and Harper, J.E., 1986, Nitric oxide and nitrous oxide production by Soybean and Winged Bean during the in vivo nitrate reductase assay, Plant Physiol., 82: 718–723.

    Article  PubMed  CAS  Google Scholar 

  • Delany, A.C., Fitzjarrald, D.R., Lenschow, D.H., Pearson Jr., R., Wendel, G.J., and Woodruff, B., 1986, Direct measurements of nitrogen oxides and ozone fluxes over grassland, J. Atmos. Chem., 4: 429–444.

    Article  CAS  Google Scholar 

  • Duyzer, J.H., Meyer, G.M., and van Aalst, R.M., 1983, Measurement of dry deposition velocities of NO, NO2 and 03 and the influence of chemical reactions, Atmos. Environ., 17: 2117–2120.

    Article  Google Scholar 

  • Enhalt, D.M., and Drummond, J.W., 1982, The tropospheric cycle of NON, in: “Chemistry of the unpolluted and polluted troposphere”, H.W. Georgii, and W. Jaeschke, eds., p. 219–251. Reidel, Dordrecht.

    Google Scholar 

  • Finlayson-Pitts, B.J., and Pitts Jr., J.N., 1986, “Atmospheric chemistry: fundamentals and experimental techniques”, Wiley, New York.

    Google Scholar 

  • Firestone, M.K., Firestone, R.B., and Tiedje, J.M., 1979, Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange, Biochem. Biophys. Res. Comm., 91: 10–16.

    Article  CAS  Google Scholar 

  • Firestone, M.K., and Davidson, E.A., 1989, Microbiological basis of NO and N20 production and consumption, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen, p. 7–21, Wiley, Chichester.

    Google Scholar 

  • Focht, D.D., and Verstraete, W., 1977, Biochemical ecology of nitrification and denitrification, Adv. Microb. Ecol., 1: 135–214.

    Article  CAS  Google Scholar 

  • Galbally, I.E., 1989, Factors controlling NOx emission from soils. in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen, p. 23–27, Wiley, Chichester.

    Google Scholar 

  • Galbally, I.E., and Roy, C.R., 1978, Loss of fixed nitrogen from soils by nitric oxide exhalation, Nature, 275: 734–735.

    Article  CAS  Google Scholar 

  • Galbally, I.E., and Johansson, C., 1989, A model relating laboratory measurements of rates of nitric oxide production and field measurements of nitric oxide emission from soils, J. Geophys. Res., 94: 6473–6480.

    Article  CAS  Google Scholar 

  • Galbally, I.E., Freney, J.R., Muirhead, W.A., Simpson, J.R., Trevitt, A.C.F., and Chalk, P.M., 1987, Emission of nitrogen oxides (NON) from a flooded soil fertilized with urea: relation to other nitrogen loss processes, J. Atmos. Chem., 5: 343–365.

    Article  CAS  Google Scholar 

  • Garber, E.A.E., and Hollocher, T.C., 1982, Nitrogen-15, oxygen-18 tracer studies on the activation of nitrite by denitrifying bacteria. Nitrite/water-oxygen exchange and nitrosation reactions as indicators of electrophilic catalysis, J. Biol. Chem., 257: 8091–8097.

    CAS  Google Scholar 

  • Garcia, J.L., 1975, La dénitrification dans les sols, Bull. Inst. Pasteur. 73: 167–193.

    CAS  Google Scholar 

  • Goreau, T.J., Kaplan, W.A., Wofsy, S.C., McElroy, M.B., Valois, F.W., and Watson, S.W., 1980, Production of NO2- and N20 by nitrifying bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol., 40: 526–532.

    CAS  Google Scholar 

  • Harriss, R.C., 1989, Experimental design for geophysiological research, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen. Wiley, Chichester. (in press)

    Google Scholar 

  • Heiss, B., Frunzke, K., and Zumft, W.G., 1989, Formation of the N-N bond from nitric oxide by membrane-bound cytochrome be complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri, J. Bacteriol., 171: 3288–3297.

    PubMed  CAS  Google Scholar 

  • Henry, Y., and Bessieres, P., 1984, Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Biochimie 66: 259–289.

    Article  PubMed  CAS  Google Scholar 

  • Hinrichsen, D., 1985, Multiple pollutants and forest decline. Ambio 15: 258–265.

    Google Scholar 

  • Hochstein, L.I., and Tomlinson, G.A., 1988, The enzymes associated with denitrification, Ann. Rev. Microbiol., 42: 231–262.

    Article  CAS  Google Scholar 

  • Isaksen, I.S.A., 1988, “Is the oxidizing capacity of the atmosphere changing?” in: “The changing atmosphere”, F.S. Rowland and I.S.A. Isaksen, eds., Dahlem Konferenzen. p. 141–157. Wiley, Chichester.

    Google Scholar 

  • Ishaque, M., and Aleem, M.I.H., 1973, Intermediates of denitrification in the chemoautotrophic Thiobacillus denitríficans, Arch. Mikrobiol., 94: 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Ji, X.B., and Hollocher, T.C., 1988a, Mechanism for nitrosation of 2,3Diaminonaphtalene by Escherichia coli: Enzymatic production of NO followed by 02-dependent chemical nitrosation, Appl. Environ. Microbiol., 54: 1791–1794.

    PubMed  CAS  Google Scholar 

  • Ji, X.B., and Hollocher, T.C., 1988b, Reduction of nitrite to nitric oxide by enteric bacteria, Biochem. Bíophys. Res. Comm., 157: 106

    Google Scholar 

  • Johansson, C., 1984, Field measurements of emission of nitric oxide from fertilized and unfertilized forest soils in Sweden, J. Atmos. Chem., 1: 429–442.

    Article  CAS  Google Scholar 

  • Johansson, C., 1987, Pine forest: a negligible sink for atmospheric NO, in rural Sweden. Tellus 39B: 426–438.

    Google Scholar 

  • Johansson, C., 1989, Fluxes of NO, above soil and vegetation, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen, p. 229–246, Wiley, Chichester.

    Google Scholar 

  • Johansson, C., and Galbally, I.E., 1984, Production of nitric oxide in loam under aerobic and anaerobic conditions, Appl. Environ. Microbiol., 47: 1284–1289.

    PubMed  CAS  Google Scholar 

  • Johansson, C., and Granat, L., 1984, Emission of nitric oxide from arable land. Tellus 36B: 25–37.

    Google Scholar 

  • Johansson, C., Rhode, H., and Sanhueza, E., 1988, Emission of NO in a tropical savanna and a cloud forest during the dry season, J. Geophys. Res., 93: 7180–7192.

    Article  CAS  Google Scholar 

  • Kaplan, W.A., Wofsy, S.C., Keller, M., and DaCosta, J.M., 1988, Emission of NO and deposition of 03 in a tropical forest system, J. Geophys. Res., 93: 1389–1395.

    Article  CAS  Google Scholar 

  • Klemedtsson, L., Svensson, B.H., and Rosswall, T., 1988a, A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil, Biol. Fertil. Soils, 6: 112–119.

    Google Scholar 

  • Klemedtsson, L., Svensson, B.H., and Rosswall, T., 1988b, Relationship between soil moisture content and nitrous oxide production during nitrification and denitrification, Biol. Fertil. Soils, 6: 106–111.

    Google Scholar 

  • Klepper, L.A., 1987, Nitric oxide emissions from Soybean leaves during in vivo nitrate reductase assays, Plant Physiol., 85: 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, R., 1981, Denitrification, in: “Soil biochemistry”, vol.5, E.A. Paul and J.N. Ladd, eds., p. 323–369. Marcel Dekker, New York.

    Google Scholar 

  • Knowles, R., 1982, Denitrification, Microbiol. Rev., 46: 43–70.

    PubMed  CAS  Google Scholar 

  • Knowles, R., 1985, Microbial transformations as sources and sinks for nitrous oxides, in: “Planetary ecology”, D.E. Caldwell, J.A. Brierley and C.L. Brierley, eds., p. 411–426. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Kreitinger, J.P., Klein, T.M., Novick, N.J., and Alexander, M., 1985, Nitrification and characteristics of nitrifying microorganisms in an acid forest soil, Soil Sci. Soc. Am. J., 49: 1407–1410.

    Article  CAS  Google Scholar 

  • Kuenen, J.G., and Robertson, L.A., 1988, Ecology of nitrification and denitrification, in: “The nitrogen and sulphur cycles”, J.A. Cole and S. Ferguson, eds., p. 162–218. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lang, E., and Jagnow, G., 1986, Fungi of a forest soil nitrifying at low pH values, FEMS Microbiol. Ecol., 38: 257–265.

    Article  CAS  Google Scholar 

  • Lipschultz, F., Zafiriou, O.C., Wofsy, S.C., McElroy, M.B., Valois, F.W., and Watson, S.W., 1981, Production of NO and N20 by soil nitrifying bacteria, Nature, 294: 641–643.

    Article  CAS  Google Scholar 

  • Liu, M.C., Liu, M.Y., Payne, W.J., Peck Jr., H.D., and LeGall, J., 1983, Wolinella succinogenes nitrite reductase: purification and properties, FEMS Microbiol. Lett., 19: 201–206.

    Article  CAS  Google Scholar 

  • Liu, S.C., Trainer, M., Fehsenfeld, F.C., Parrish, D.D., Williams, E.J., Fahey, D.W., Hübler, G., and Murphy, P.C., 1987, Ozone production in the rural troposphere and the implications for regional and global ozone distribution, J. Geophys. Res., 92: 4191–4207.

    Article  CAS  Google Scholar 

  • Lloyd, D., Boddy, L., and Davies, K.J.P., 1987, Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception, FEMS Microbiol. Ecol., 45: 185–190.

    Article  CAS  Google Scholar 

  • Logan, J.A., 1983, Nitrogen oxides in the troposphere: global and regional budgets, J. Geophys. Res., 88: 10785–10807.

    Article  CAS  Google Scholar 

  • Logan, J.A. 1985. Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence, J. Geophys. Res., 90: 10463–10482.

    Article  Google Scholar 

  • McKenney, D.J., Shuttleworth, K.F., Vriesacker, J.R., and Findlay, W.I., 1982, Production and loss of nitric oxide from denitrification in anaerobic Brookston clay, Appl. Environ. Microbiol., 43: 534–541.

    CAS  Google Scholar 

  • McKenney, D.J., Johnson, G.P., and Findlay, W.I., 1984, Effect of temperature on consecutive denitrification reactions in Brookston clay and Fox’sandy loam, Appl. Environ. Microbiol., 47: 919–926.

    PubMed  CAS  Google Scholar 

  • Melillo, J.M., Steudler, P.A., Aber, J.D., and Bowden, R.D., 1989, Atmospheric deposition and nutrient cycling, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen, p. 263–280, Wiley, Chichester.

    Google Scholar 

  • Nelson, D.W., 1982, Gaseous losses of nitrogen other than through denitrification, Agronomy, 22: 327–364.

    CAS  Google Scholar 

  • Newman, B.M., and Cole, J.A., 1978, The chromosomal location and pleiotropic effects of mutations of the nirA+ gene of Escherichia coli K12: the essential role of nirA+ in nitrite reduction and other anaerobic reactions, J. Gen. Microbiol., 10: 1–12.

    Google Scholar 

  • Papen, H., Von Berg, R., Hinkel, I., Thoene, B., and Rennenberg, H., 1989, Heterotrophic nitrification by Alcaligenes faecalis: NO2-, NO3-, N2O, and NO production in exponentially growing cultures, Appl. Environ. Microbiol., 55: 2068–2072.

    PubMed  CAS  Google Scholar 

  • Parkin, T.B., 1987, Soil microsites as a source of denitrification variability, Soil. Sci. Soc. Am. J., 51: 1194–1199.

    Article  CAS  Google Scholar 

  • Parkin, T.B., Sexstone, A.J., and Tiedje, J.M., 1985, Adaptation of denitrifying populations to low soil pH, Appl. Environ. Microbiol., 49: 1053–1056.

    CAS  Google Scholar 

  • Payne, W.J., 1981, “Denitrification”, Wiley, New York.

    Google Scholar 

  • Payne, W.J., Grant, M.A., Shapleigh, J., and Hoffman, P., 1982, Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species, J. Bacteriol., 152: 915–918.

    PubMed  CAS  Google Scholar 

  • Penkett, S.A., 1988, Indications and causes of ozone increase in the troposphere, in: “The changing atmosphere”, F.S. Rowland and I.S.A. Isaksen, eds., Dahlem Konferenzen. p. 91–103. Wiley, Chichester.

    Google Scholar 

  • Pichinoty, F., Garcia, J.L., Job, C., and Durand, C., 1978, Isolement de bacteries utilisant en anaerobiose l’oxyde nitrique comme acepteur d’electrons respiratoire. C.R., Acad. Sci. Ser. D., 286: 1403–1405.

    CAS  Google Scholar 

  • Poth, M., 1986, Dinitrogen production from nitrite by a Nitrosomonas isolate, Appl. Environ. Microbiol., 52: 957–959.

    PubMed  CAS  Google Scholar 

  • Poth, M., and Focht, D.D., 1985, 15N kinetic analysis of N20 production by Nirosomonas europaea: an examination of nitrifier denitrification, Appl. Environ. Microbiol., 49: 1134–1141.

    PubMed  CAS  Google Scholar 

  • Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M., 1987, Climate-chemical interactions and effects of changing atmospheric trace gases, Rev. Geophys., 25: 1441–1482.

    Article  CAS  Google Scholar 

  • Remde, A., 1989, “Umsetzung von NOx in Böden and Bodenmikroorganismen”, PhD thesis, University of Konstanz, Konstanz, F.R.G.

    Google Scholar 

  • Remde, A., Slemr, F., and Conrad, R., 1989, Microbial production and uptake of nitric oxide in soil, FEMS Microbiol. Ecol., 62: 221–230.

    Article  CAS  Google Scholar 

  • Ritchie, G.A.F., and Nicholas, D.J.D., 1972, Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea, Biochem. J., 126: 1181–1191.

    PubMed  CAS  Google Scholar 

  • Robertson, G.P., 1989, Nitrification and denitrification in humid tropical ecosystems: potential controls on nitrogen retention, in: “Mineral nutrients in tropical forest and savanna ecosystems”, J. Procter, ed., Blackwell Scientific, Oxford.

    Google Scholar 

  • Robertson, G.P., and Tiedje, J.M., 1987, Nitrous oxide sources in aerobic soils: nitrification, denitrification and other biological processes, Soil Biol. Biochem., 19: 187–193.

    Article  CAS  Google Scholar 

  • Robertson, L.A., and Kuenen, J.G., 1984, Aerobic denitrification: a controversy revived, Arch. Microbiol., 139: 351–354.

    Article  CAS  Google Scholar 

  • Robertson, L.A., and Kuenen, J.G., 1986, Heterotrophic nitrification in Thiosphaera pantotropha: oxygen uptake and enzyme studies, J. Gen. Microbiol., 134: 857–863.

    Google Scholar 

  • Robertson, L.A., Van Niel, E.W.J., Torremans, R.A.M., and Kuenen, J.G., 1988, Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera panthotropha, Appl. Environ. Microbiol.. 54: 2812–2818.

    CAS  Google Scholar 

  • Ryden, J.C., 1981, N20 exchange between a grassland soil and the atmosphere. Nature 292: 235–237.

    Article  CAS  Google Scholar 

  • Schmidt, E.L., 1982. Nitrification in soil. Agronomy 22: 253–288.

    CAS  Google Scholar 

  • Schröder, I., Robertson, A.M., Bokranz, M., Unden, G., Bocher, R., and Kröger, A., 1985, The membraneous nitrite reductase involved in the electron transport of Wolinella succinogenes, Arch. Microbiol., 140: 380–386.

    Article  Google Scholar 

  • Seiler, W., and Conrad, R., 1981, Field measurements of natural and fertilizer induced N20 release rates from soils, J. Air Poll. Contr. Assoc., 31: 767–772.

    Article  CAS  Google Scholar 

  • Shapleigh, J.P., and Payne, W.J., 1985, Nitric oxide-dependent proton translocation in various denitrifiers, J. Bacteriol., 163: 837–840.

    PubMed  CAS  Google Scholar 

  • Singh, H.B., 1987, Reactive nitrogen in the troposphere, Environ. Sci. Technol., 21: 320–327.

    Article  PubMed  CAS  Google Scholar 

  • Slemr, F., and Seiler, W., 1984, Field measurements of NO and NO2 emissions from fertilized and unfertilized soils, J. Atmos. Chem., 2: 1–24.

    Article  CAS  Google Scholar 

  • Slemr, F., Conrad, R., and Seiler, W., 1984, Nitrous oxide emissions from fertilized and unfertilized soils in a subtropical region (Andalusia, Spain ), J. Atmos. Chem., 1: 159–169.

    Article  CAS  Google Scholar 

  • Smith, M.S., 1983, Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity, Appl. Environ. Microbiol., 45: 1545–1547.

    PubMed  CAS  Google Scholar 

  • Söderlund, R., and Svensson, B.H., 1976, The global nitrogen cycle, in: “Nitrogen, phosphorus and sulphur-global cycles”, B.H. Svensson and R. Söderlund, eds., SCOPE 7, p. 23–73. Stockholm.

    Google Scholar 

  • Stedman, D.M., and Shetter, R.E., 1983, The global budget of atmospheric nitrogen species, in: “Trace atmospheric constituents”, S.E. Schwartz, ed., p. 411–454. Wiley, New York.

    Google Scholar 

  • Teraguchi, S., and Hollocher, T.C., 1989, Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes, J. Biol. Chem., 264: 1972–1979.

    PubMed  CAS  Google Scholar 

  • Thauer, R.K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bact. Rev., 41: 100–180.

    PubMed  CAS  Google Scholar 

  • Tiedje, J.M., 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonia, in: “Biology of anaerobic microorganisms”, A.J.B. Zehnder, ed., p. 179–244. Wiley, New York.

    Google Scholar 

  • Van Cleemput, O., and Baert, L., 1976, Theoretical considerations on nitrite self-decomposition reactions in soils, Soil Sci. Soc. Am. J., 40: 322–324.

    Google Scholar 

  • Van Cleemput, O., and Baert, L., 1984, Nitrite: a key compound in N loss processes under acid conditions, Plant Soil, 76: 233–241.

    Article  Google Scholar 

  • Vedenina, I.Y., and Zavarzin, G.A., 1977, Biological removal of nitrous oxide under oxidizing conditions, Mikrobiologiya, 46: 898–903.

    CAS  Google Scholar 

  • Vedenina, I.Y., Miller, Y.M., Kapustin, 0.A, and Zavarzin, G.A., 1980, Oxidation of nitrous oxide during decomposition of hydrogenperoxide by catalase, Mikrobiologiya, 49: 5–8.

    CAS  Google Scholar 

  • Warneck, P., 1988, “Chemistry of the natural atmosphere”, Academic Press, London.

    Google Scholar 

  • Wesely, M.L., Eastman, J.A., Stedman, D.H., and Yalvac, E.D., 1982, An eddy-correlation measurement of NO2 flux to vegetation and comparison to 03 flux, Atmos. Environ., 16: 815–820.

    Google Scholar 

  • Williams, E.J., Parrish, D.D., and Fehsenfeld, F.C., 1987, Determination of nitrogen oxide emissions from soils: results from a grassland site in Colorado, United States, J. Geophys. Res. 92: 2173–2179.

    Article  CAS  Google Scholar 

  • Williams, E.J., Parrish, D.D., Buhr, M.P., Fehsenfeld, F.C., and Fall, R., 1988, Measurement of soil NO emissions in central Pennsylvania, J. Geophys. Res., 93: 9539–9546.

    Article  CAS  Google Scholar 

  • Yoshinari, T., 1980, N20 reduction by Vibrio succinogenes, Appl. Environ. Microbiol., 39: 81–84.

    CAS  Google Scholar 

  • Yoshinari, T., 1985, Nitrite and nitrous oxide production by Methylosinus trichosporium, Can. J. Microbiol., 31: 139–144.

    Article  Google Scholar 

  • Zafiriou, O.C., Hanley, Q.S., and Snyder, G., 1989, Nitric oxide and nitrous oxide production and cycling during dissimilatory nitrite reduction by Pseudomonas perfectomarina, J. Biol. Chem., 264: 5694–5699.

    PubMed  CAS  Google Scholar 

  • Zumft, W.G., Döhler, K., Körner, H., Löchelt, S., Viebrock, A., and Frunzke, K., 1988, Defects in cytochrome cdl-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri, Arch. Microbiol., 149: 492–498.

    Article  PubMed  CAS  Google Scholar 

  • Zumft, W.G., Viebrock, A., and Körner, H., 1988. Biochemical and physiological aspects of denitrification, in: “The nitrogen and sulphur cycles”, J.A. Cole and S. Ferguson, eds., p. 245–279. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Conrad, R. (1990). Flux of NOx between Soil and Atmosphere: Importance and Soil Microbial Metabolism. In: Revsbech, N.P., Sørensen, J. (eds) Denitrification in Soil and Sediment. Federation of European Microbiological Societies Symposium Series, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9969-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9969-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9971-2

  • Online ISBN: 978-1-4757-9969-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics