Skip to main content

Physiology, Biochemistry and Genetics of Nitrate Dissimilation to Ammonia

  • Chapter
Denitrification in Soil and Sediment

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 56))

Abstract

Many textbooks, symposium publications and even edited papers in leading journals present denitrification as the only dissimilatory pathway for bacterial NO 3 reduction. In fact, the rapid, dissimilatory reduction to NH +4 by fermentative bacteria was documented many years ago (see, for example, Woods, 1938). As the limited literature on NO 3 dissimilation to NH +4 published before 1988 has recently been reviewed extensively (Cole, 1988; 1989), this article will focus on recent developments which confirm or conflict with the previous conclusions. Although the practical importance of denitrification by essentially respiratory bacteria is beyond doubt, Figure 1 presents it — possibly for the first time — in the context of the emerging diversity of enzymes which have evolved to dissimilate NO 3 and NO 2 in different bacterial groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Jaoude, A., Chippaux, M., and Pascal, M.-C., 1979a, Formate-nitrite reduction in Escherichia coli K12. 1. Physiological study of the system, Eur. J. Biochem., 95: 309.

    Article  PubMed  CAS  Google Scholar 

  • Abou-Jaoude, A., Pascal, M.C. and Chippaux, M., 1979b, Formate-nitrite reduction in Escherichia Coli K12. 2. Identification of components involved in the electron transfer, Eur. J. Biochem.. 95: 315.

    CAS  Google Scholar 

  • Bell, A.I., Gaston, K.L., Cole, J.A. and Busby, S.J.W, 1989, Cloning of binding sequences for the Escherichia coli transcription activators, FNR and CRP; location of bases involved i discrimination between FNR and CRP. Nucl. Acids Res. 17: 3865.

    Article  PubMed  CAS  Google Scholar 

  • Bielkie, A., and Ketchum, P.A., 1989, Purification of nitrate reductase from Xanthomonas maltophila. Abstract K-121. Abstracts of the Annual Meeting of the American Society for Microbiology. p. 265.

    Google Scholar 

  • Bonnefoy, V., Burini, J.F., Giordano, G., Pascal, M.-C. and Chippaux, M., 1987, Presence in the “silent” terminus region of Escherichia coli K12 chromosome of cryptic gene(s) encoding a new nitrate reductase, Mol. Microbiol., 1: 143.

    Article  PubMed  CAS  Google Scholar 

  • Caskey, W.H., and Tiedje, J.M., 1979, Evidence for clostridia as agents of dissimilatory reduction of nitrate to ammonium in soil, Soil Sci. Soc. Am. J., 43: 931.

    Article  CAS  Google Scholar 

  • Cole, J.A., 1968. Cytochrome ç552 and nitrite reduction in Escherichia coli, Biochimica et Biophysica Acta., 162: 356.

    Article  PubMed  CAS  Google Scholar 

  • Cole, J.A., 1988, Assimilatory and dissimilatory reduction of nitrate to ammonia. In: “The Nitrogen and Sulphur Cycles” Eds. Cole, J.A., and Ferguson, S.J., Symposium 42, The Society for General Microbiology, Cambridge University Press, U.K.

    Google Scholar 

  • Cole, J.A., 1989, Physiology, biochemistry and genetics of nitrite reduction by Escherichia coli, In: “Molecular and Genetic Aspects of Nitrate Assimilation” Eds. Wray, J.L., and Kinghorn, J.R., Oxford University Press, U.K.

    Google Scholar 

  • Cole, J.A., and Brown, C.M., 1980, Nitrite reduction to ammonium by fermentative bacteria: a short circuit in the biological nitrogen cycle, FEMS Microbiol. Lett., 7: 65.

    Article  CAS  Google Scholar 

  • Cole, J.A., and Ward, F.B., 1973, Nitrite reductase-deficient mutants of Escherichia coli K12, J. Gen. Microbiol., 76: 21.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, K.J., Cornish-Bowden, A., and COLE, J.A., 1978a, Purification and properties of nitrite reductase from Escherichia coli K12, Biochem. J. 175, 483.

    PubMed  CAS  Google Scholar 

  • Coleman, K.J., Cornish-Bowden, A., and Cole J.A., 1978b, Activation of nitrite reductase from Escherichia coli K12 by oxidized nicotine-adenine dinucleotide, Biochem. J., 175: 495.

    PubMed  CAS  Google Scholar 

  • Drummund, M.H., Whitty, P.W., and Wootton, J.C., 1986, Sequence and domain relationships of ntrC and nifA from Klebsiella pneumoniae; homologies to other regulatory proteins, EMBO J., 5: 441.

    Google Scholar 

  • Fazzolari Correa, E., Mariotti, A., and Germon, J.C., 1989, Dissimilatory nitrate reduction into ammonium by Enterobacter amnigenus: ability and competition with denitrification with Agrobacterium radiobacter, Abstract N-83, Abstracts of the Annual Meeting of the American Society for Microbiology, p. 299.

    Google Scholar 

  • Forsythe, S.J., Dolby, J.M., Webster, A.D.B., and Cole, J.A., 1988

    Google Scholar 

  • Nitrate-and nitrite-reducing bacteria in the achlorhydric stomach, J. Med. Microbiol., 25: 253.

    Google Scholar 

  • Fujita, T., and Sato, R., 1966a, Studies on soluble cytochromes in Enterobacteriaceae III. Localization of cytochrome ç552 in the surface layer of cells, J. Biochem., 60: 568.

    CAS  Google Scholar 

  • Fujita, T., and Sato, R., 1966b, Studies on soluble cytochromes in Enterobacteriaceae IV. Possible involvement of cytochrome _c552 in anaerobic nitrite metabolism, The Journal of Biochemistry, 60: 691.

    CAS  Google Scholar 

  • Fujita, T., and Sato, R., 1967, Studies on soluble cytochromes in Enterobacteriaceae V. Nitrite-dependent gas evolution in cells containing cytochrome ç552, J. Biochem., 62: 230.

    PubMed  CAS  Google Scholar 

  • Gray, C.T., Wimpenny, J.W.T., Hughes, D.E., and Ranlett, M., 1963, A soluble c-type cytochrome from anaerobically grown Escherichia coli and various Enterobacteriaceae, Biochim. Biophys. Acta., 67: 157.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, L., and Cole, J.A., 1987, Lack of redox control of the anaerobically-induced nirB+ gene of Escherichia coli K-12. Arch. Microbiol., 147: 364.

    Article  PubMed  CAS  Google Scholar 

  • Haddock, B.A., and Jones, C.W., 1977, Bacterial respiration, Bacteriol. Rev., 41: 47.

    PubMed  CAS  Google Scholar 

  • Hasan, S.M., and Hall, J.B., 1975, The physiological function of nitrate reduction in Clostridium perfringens, J. Gen. Microbiol., 87: 120.

    Article  PubMed  CAS  Google Scholar 

  • Ingledew, W.J., and Poole, R.K., 1984, The respiratory chains of Escherichia coli. Microbiol. Rev., 48: 222.

    PubMed  CAS  Google Scholar 

  • Jackson, R.H., Cornish-Bowden, A., and Cole, J.A., 1981a, Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12, Bioch. J., 193: 861.

    CAS  Google Scholar 

  • Jackson, R.H., Cole, J.A., and Cornish-Bowden, A., 1981b, The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K12: nitrite and hydroxylamine reduction, Biochem. J., 199: 171.

    PubMed  CAS  Google Scholar 

  • Jackson, R.H., Cole, J.A., and Cornish-Bowden, A., 1982, The steady state kinetics of the NADH-dependent nitrite reductase from Escherichia coli: the reduction of single-electron acceptors, Biochem. J., 203: 505.

    PubMed  CAS  Google Scholar 

  • Jayaraman, P.S., Peakman, T.C., Busby, S.J.W., Quincey, R.V., and Cole, J.A., 1987, Location and sequence of the promoter of the gene for the NADH-dependent nitrite reductase of Escherichia coli and its regulation by oxygen, the FNR protein and nitrite, J. Mol. Biol., 196: 781.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, P.-S., Gaston, K.L., Cole, J.A., and Busby, S.J.W., 1988, The nirB promoter of Escherichia coli: location of nucleotide sequences essential for regulation by oxygen, the FNR protein and nitrite, Mol. Microbiol., 2: 527.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, P.-S., Cole, J.A., and Busby, S.J.W., 1989, Mutational analysis of the sequence at the FNR-dependent nirB promoter in Escherichia coli, Nucl. Acids Res., 17: 135.

    Article  PubMed  CAS  Google Scholar 

  • Jeter, R.M., Sias, S.R., and Ingraham, J.L., 1984, Chromosomal location and function of genes affecting Pseudomonas aeruginosa nitrite assimilation, J. Bacterol., 157, 673.

    CAS  Google Scholar 

  • Jones, G.A., 1972, Dissimilatory metabolism of nitrate by the rumen microbiota, Can. J. Microbiol., 18: 1783.

    Article  PubMed  CAS  Google Scholar 

  • Kajie, S., and Anraku, Y., 1986, Purification of a hexaheme cytochrome c552 from Escherichia coli K12 and its properties as a nitrite reductase, Eur. J. Biochem., 154: 457.

    Article  PubMed  CAS  Google Scholar 

  • Kaspar, H.F., and Tiedje, J.M., 1982, Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene, Appl. Environ. Microbiol., 41: 705.

    Google Scholar 

  • Kemp, J.D., and Atkinson, D.E., 1966, Nitrite reductase of Escherichia coli specific for reduced nicotinamide adenine dinucleotide, J. Bacteriol., 92: 628.

    PubMed  CAS  Google Scholar 

  • Kemp, J.D., Atkinson, D.E., Ehret, A., and Lazzarimi, R.A., 1963, Evidence for the identity of the nicotinamide adenine dinucleotide phosphate-specific sulphite and nitrite reductases of Escherichia coli, J. Biol. Chem., 238: 3466.

    PubMed  CAS  Google Scholar 

  • Koike, I., and Hattori, A., 1978a, Denitrification and ammonia formation in anaerobic coastal sediments. Appl. Environ. Microbiol., 35: 278.

    PubMed  CAS  Google Scholar 

  • Koike, I., and Hattori, A., 1978b, Simultaneous determination of nitrification andnitrate reduction in coastal sediments by a 15N dilution technique, Appl. Environ. Microbiol., 35: 853.

    PubMed  CAS  Google Scholar 

  • Lambden, P.R., and Guest, J.R., 1976, Mutants of Escherichia coli K12 unable to use fumarate as an electron acceptor, J. Gen. Microbiol., 97: 145.

    Article  PubMed  CAS  Google Scholar 

  • Lang, F. and Hochstein, L.I., 1989, Purification and properties of a nitrate reductase from Halobacterium denitrificans. Abstract K-122. Abstracts of the Annual Meeting of the American Society for Microbiology, p. 265.

    Google Scholar 

  • Lazzarini, R.A., and Atkinson, D.E., 1961, A TPN specific nitrite reductase from E. coli, J. Biol. Chem., 236: 3330.

    CAS  Google Scholar 

  • Lewis, D., 1951, The metabolism of nitrate and nitrite in sheep.2. Hydrogen donators in nitrate reduction by rumen microorganisms in vitro Biochem.J., 49: 149.

    PubMed  CAS  Google Scholar 

  • Liu, M.-C., Baker, B.W., Liu, M.-Y., and Dao, T.N., 1988, Purification of Vibrio fischeri nitrite reductase and its characterisation as a hexaheme c-type cytochrome, Arch. Biochem. Biophys., 262: 259.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M.-C., and Peck, H.D., 1981, The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase, J. Biol. Chem., 256: 13159.

    PubMed  CAS  Google Scholar 

  • Macdonald, H., and Cole, J.A., 1985, Molecular cloning and functional analysis of the cysG and nirB genes of Escherichia coli K12, two closely-linked genes required for NADH-dependent nitrite reductase activity, Mol. Gen.Genet. 200: 328.

    Article  PubMed  CAS  Google Scholar 

  • Massey, V., and Veeger, C., 1961, Studies on the reaction mechanisms of lipoyl dehydrogenase, Biochim. Biophys. Acta., 48: 33.

    Article  PubMed  CAS  Google Scholar 

  • Motteram, P.A.S., Mc Carthy, J.E.G., Ferguson, S.J., Jackson, J.B., and Cole, J.A., 1981, Energy conservation during the formate-dependent reduction of nitrite by Escherichia coli, FEMS Microbiol. Letts., 12: 317.

    Article  CAS  Google Scholar 

  • Newman, B.M., and Cole, J.A., 1978, The chromosomal location and pleiotropic effects of mutations in the nirA+ gene of Escherichia coli K12: the essential role of nirA+ in nitrite reduction and in other anaerobic redox reactions, J. Gen. Microbiol., 106: 1.

    Article  PubMed  CAS  Google Scholar 

  • Pabo, C.O., and Sauer, R.T., 1984, Protein-DNA recognition, Ann. Rev. Biochem., 53: 293.

    Article  PubMed  CAS  Google Scholar 

  • Peck, H.D., and Gest, H., 1957, Formic dehydrogenase and the hydrogenlyase enzyme complex in Coli-Aerogenes bacteria, J. Bacteriol., 73: 706.

    PubMed  CAS  Google Scholar 

  • Pope, N.R., and Cole, J.A., 1982, Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli. J. Gen. Microbiol., 128: 319.

    Google Scholar 

  • Pope, N.R., and Cole, J.A., 1984, Pyruvate and ethanol as electron donors for nitrite reduction by Escherichia coli K12, J. Gen. Microbiol., 130: 1279.

    PubMed  CAS  Google Scholar 

  • Postgate, J.R., 1954, Presence of cytochrome in an obligate anaerobe, Biochem. J., 56: 11

    Google Scholar 

  • Rönner, V., and Sorensen, F., 1985, Denitrification rates in the low-oxygen waters of the stratified Baltic proper, Appl. Environ. Microbiol., 50: 801.

    PubMed  Google Scholar 

  • Samuelsson, M.-O., and Rönner, V., 1982, Ammonium production by dissimilatory nitrate reducers isolated from Baltic sea water, as indicated by 15N study, Appl. Environ. Microbiol., 44: 1241.

    PubMed  CAS  Google Scholar 

  • Schroder, I., Robertson, A.M., Bokranz, M., Unden, G., Bocher, R., and Kroger, A., 1985, The membranous nitrite reductase involved in the electron transport of Wolinella succinogenes, Arch. Microbiol., 140: 380.

    Article  Google Scholar 

  • Seki, S., Hattori, Y., Hasegawa, T., Haraguchi, H., and Ishimoto, M., 1987, Studies on nitrate reductase of Clostridium perfringens. IV. Identification of metals, molybdenum cofactor and iron-sulfur cluster, J. Biochem., 101: 503.

    PubMed  CAS  Google Scholar 

  • Seki-Chiba, S., and Ishimoto, M., 1977, Studies on nitrate reductase of Clostridium perfringens: I. Purification, some properties, and effect of tungstate on its formation, J. Biochem., 82: 1663.

    PubMed  CAS  Google Scholar 

  • Smith, M., 1983, Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity, Appl. Environ. Microbiol., 45: 1545.

    PubMed  CAS  Google Scholar 

  • Sorensen, J., 1978, Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment, Appl. Environ. Microbiol., 35: 301.

    PubMed  CAS  Google Scholar 

  • Spiro, S., and Guest, J.R., 1987a, Activation of the lac operon of Escherichia coli by a mutant FNR protein, Mol. Microbiol., 1: 53.

    Article  PubMed  CAS  Google Scholar 

  • Spiro,S., and Guest, J.R., 1987b, Regulation and over-production of the fnr gene of Escherichia coli, J. Gen. Microbiol., 133: 3279.

    Google Scholar 

  • Steenkemp, D.J., and Peck, H.D., 1980, The association of hydrogenase and dithionite reductase of Desulfovibrio desulfuricans, Biochem. Biophys. Res. Commun., 94: 41.

    Article  Google Scholar 

  • Steenkemp, D.J., and Peck, H.D., 1981, Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans, J. Biol. Chem., 256: 5450.

    Google Scholar 

  • Stewart, V., 1982, Requirement of Fnr and Narl functions for nitrate reductase expression in Escherichia Coli K12, J. Bacteriol., 151: 1320.

    PubMed  CAS  Google Scholar 

  • Stewart, V., Parales, J., and Merkel, S.M., 1989, Structure of genes narL and narX of the nar (Nitrate Reductase) locus in Escherichia coli K-12, J. Bacteriol., 171: 2229.

    PubMed  CAS  Google Scholar 

  • Van’t Riet, J., and Planta, R.J., 1975, Purification, structure and properties of the respiratory nitrate reductase of Klebsiella aerogenes, Biochim. Biophys. Acta., 379: 81.

    Article  Google Scholar 

  • Wimpenny, J.W.T., and Cole, J.A., 1967, The regulation of metabolism of facultative bacteria.III. The effect of nitrate. Biochim. Biophys. Acta., 148: 233.

    Article  PubMed  CAS  Google Scholar 

  • Wimpenny, J.W.T., and Warmsley, A.M.H., 1968, The effect of nitrate on Krebs cycle enzymes in various bacteria, Biochim. Biophys. Acta, 156: 297.

    Article  PubMed  CAS  Google Scholar 

  • Woods, D.D., 1938, The reduction of nitrate to ammonia by Clostridium welchii, Biochem. J., 32: 2000.

    Google Scholar 

  • Yamamoto, I., Shimizu, H., Tsuji,T., and Ishimoto, M., 1986, Purification and properties of nitrate reductase from Mitsuokella multiacidus, J. Biochem, 99: 961.

    CAS  Google Scholar 

  • Zarowny, D.P., and Sanwal, B.D., 1963, Characterization of an NADH-specific nitrite reductase from E. coli K12, Can. J. Microbiol., 9: 531.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cole, J.A. (1990). Physiology, Biochemistry and Genetics of Nitrate Dissimilation to Ammonia. In: Revsbech, N.P., Sørensen, J. (eds) Denitrification in Soil and Sediment. Federation of European Microbiological Societies Symposium Series, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9969-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9969-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9971-2

  • Online ISBN: 978-1-4757-9969-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics