Skip to main content

Abstract

Nitrous oxide (N2O) is a firmly established inorganic metabolite of denitrification. It is either the end product of the process or the obligatory intermediate antecedent to N2. Ample evidence for its role comes from physiological, biochemical, and genetic work as well as from isotope studies. Involvement of N2O in denitrification is now documented to such an extent, that the existence of a copper and/or iron-containing metalloflavoprotein (EC 1.7.99.2), described to form N2 from NO (Chung and Najjar, 1956; Fewson and Nicholas, 1961), must be questioned. N2O is also a product of denitrification by nitrifiers and of NO 3 and NO 2 metabolism of non-denitrifying microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

literature Cited

  • Adkins, A. M., and R. Knowles. 1986. Denitrification by Cytophaga johnsonae strains and by a gliding bacterium able to reduce nitrous oxide in the presence of acetylene and sulfide. Can. J. Microbiol. 32: 421–424.

    Article  CAS  Google Scholar 

  • Alefounder, P. R., A. J. Greenfield, J. E. G. McCarthy, and S. J. Ferguson. 1983. Selection and organisation of denitrifying electrontransfer pathways in Paracoccus denitrificans. Biochim. Biophys. Acta 724: 20–39.

    Article  CAS  Google Scholar 

  • Ames, G. F.-L. 1986. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu. Rev. Biochem. 55: 397–425.

    Article  PubMed  CAS  Google Scholar 

  • Baalsrud, K., and K. S. Baalsrud. 1954. Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20: 34–62.

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski, D. A., and R. P. Blakemore. 1983. Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl. Environ. Microbiol. 46: 1118–1124.

    PubMed  CAS  Google Scholar 

  • Bazylinski, D. A., R. B. Frankel, and H. W. Jannasch. 1988. Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature (London) 334: 518–519.

    Article  Google Scholar 

  • Bazylinski, D. A., E. Palome, N. A. Blakemore, and R. P. Blakemore. 1986a. Denitrification by Chromobacterium violaceum. Appl. Environ. Microbiol. 52: 696–699.

    PubMed  CAS  Google Scholar 

  • Bazylinski, D. A., C. K. Soohoo, and T. C. Hollocher. 1986b. Growth of Pseudomonas aeruginosa on nitrous oxide. Appl. Environ. Microbiol. 51: 12391246.

    Google Scholar 

  • Beijerinck, M. W., and D. C. J. Minkman. 1910. Bildung und Verbrauch von Stickoxydul durch Bakterien. Zentralbl. Bakteriol. Abt. 2, 25: 30–63.

    Google Scholar 

  • Bonin, P., M. Gilewicz, and J. C. Bertrand. 1987. Denitrification by a marine bacterium Pseudomonas nautica strain 617. Ann. Inst. Pasteur/Microbiol., 138: 371–383.

    Article  CAS  Google Scholar 

  • Boogerd, F. C., H. W. van Versefeld, and A. H. Stouthamer. 1981. Respiration-driven proton translocation with nitrite and nitrous oxide in Paracoccus denitrificans. Biochim. Biophys. Acta 638: 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Broda, E. 1975. The evolution of the bioenergetic processes. Pergamon Press, Oxford.

    Google Scholar 

  • Burkhardt, R., and V. Braun. 1987. Nucleotide sequence of the fhuC and fhuD genes involved in iron(II) hydroxamate transport: domains in FhuC homologous to ATP-binding proteins. Mol. Gen. Genet. 209: 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, C. A., and J. L. Ingraham. 1983. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl. Environ. Microbiol. 45: 1247–1253.

    Google Scholar 

  • Carr, G., and S. J. Ferguson. 1988. Nitric oxide reductase of Paracoccus denitrificans. Biochem. Soc. Trans. 16: 187–188.

    CAS  Google Scholar 

  • Carr, G. J., M. D. Page, and S. J. Ferguson. 1989. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Eur. J. Biochem. 179: 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Chung, C. W., and V. A. Najjar. 1956. Cofactor requirements for enzymatic de nitrification. II. Nitric oxide reductase J. Biol. Chem. 218: 627–632.

    PubMed  CAS  Google Scholar 

  • Cox, C. D., Jr., and W. J. Payne. 1973. Separation of soluble denitrifying enzymes and cytochromes from Pseudomonas perfectomarinus. Can. J. Microbiol. 19: 861–872.

    Article  PubMed  CAS  Google Scholar 

  • Cox, C. D., Jr., W. J. Payne, and D. V. DerVartanian. 1971. Electron paramagnetic resonance studies on the nature of hemoproteins in nitrite and nitric oxide reduction. Biochim. Biophys. Acta 253: 290–294.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, C. L., W. G. Zumft, P. M. H. Kroneck, H. Körner, and W. Jakob. 1985. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur. J. Biochem. 153: 459–467.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, R. M., A. W. Limmer, K. W. Steele, and I. M. Smith. 1982. Anaerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains. J. Gen. Microbiol. 128: 1811–1815.

    Google Scholar 

  • Dhesi, R., and R. Timkovich. 1984. Patterns of inhibition for bacterial nitrite reductase. Biochem. Biophys. Res. Commun. 123: 966–972.

    Article  PubMed  CAS  Google Scholar 

  • Dooley, D. M., R. S. Moog, and W. G. Zumft. 1987. Characterization of the copper sites in Pseudomonas perfectomarina nitrous oxide reductase by resonance Raman spectroscopy. J. Am. Chem. Soc. 109: 6730–6735.

    Article  CAS  Google Scholar 

  • Ferguson, S. J. 1988. The redox reactions of the nitrogen and sulphur cycles, p. 1–29. In J. A. Cole, and S. J. Ferguson (ed.) The nitrogen and sulphur cycles. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fewson, C. A., and J. D. Nicholas. 1961. Nitric oxide reductase from Pseudomonas aeruginosa. Biochem. J. 78: 9–10 p.

    Google Scholar 

  • Firestone, M. K., R. B. Firestone, and J. M. Tiedje. 1979. Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange. Biochem. Biophys. Res. Commun. 91: 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Freitag, A., M. Rudert, and E. Bock. 1987. Growth of Nitrobacter by dissimilatoric nitrate reduction. FEMS Microbiol. Lett. 48: 105–109.

    CAS  Google Scholar 

  • Friedrich, M. J., L. C. DeVeaux, and R. J. Kadner. 1986. Nucleotide sequence of the btuCED genes involved in vitamin B12 transport in Escherichia coli and homology with components of periplasmic-binding protein-dependent transport systems. J. Bacteriol. 167: 928–934.

    PubMed  CAS  Google Scholar 

  • Frunzke, K., and W. G. Zumft. 1986. Inhibition of nitrous-oxide respiration by nitric oxide in the denitrifying bacterium Pseudomonas perfectomarina. Biochim. Biophys. Acta 852: 119–125.

    Article  CAS  Google Scholar 

  • Gamble, T. N., M. R. Betlach, and J. M. Tiedje. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33: 926–939.

    PubMed  CAS  Google Scholar 

  • Garber, E. A. E., D. Castignetti, and T. C. Hollocher. 1982. Proton translocation and proline uptake associated with reduction of nitric oxide by denitrifying Paracoccus denitrificans. Biochem. Biophys. Res. Commun. 107: 1504–1507.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, J.-L., F. Pichinoty, M. Mandel, and B. Greenway. 1977. A new denitrifying saprophyte related to Pseudomonas pickettii. Ann. Microbiol. (Inst. Pasteur) 128A: 229–237.

    CAS  Google Scholar 

  • Grant, M. A., S. E. Cronin, and L. I. Hochstein. 1984. Solubilization and resolution of the membrane-bound nitrite reductase from Paracoccus halodenitrificans into nitrite and nitric oxide reductases. Arch. Microbiol. 140: 183–186.

    Article  CAS  Google Scholar 

  • Greenberg, E. P., and G. E. Becker. 1977. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads. Can. J. Microbiol. 23: 903–907.

    Article  PubMed  CAS  Google Scholar 

  • Hart, L. T., A. D. Larson, and C. S. McCleskey. 1965. Denitrification by Corynebacterium nephridii. J. Bacteriol. 89: 1104–1108.

    PubMed  CAS  Google Scholar 

  • Heiss, B., K. Frunzke, and W. G. Zumft. 1989. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome be complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J. Bacteriol. 171: 3288–3297.

    PubMed  CAS  Google Scholar 

  • Higgins, C. F., I. D. Hiles, G. P. C. Salmond, D. R. Gill, J. A. Downie, I. J. Evans, I. B. Holland, L. Gray, S. D. Buckels, A. W. Bell, and M. A. Hermodson. 1986. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature (London) 323: 448–450.

    Article  CAS  Google Scholar 

  • Higgins, C. F., M. P. Gallagher, M. L. Mimmack, and S. R. Pearce. 1988. A family of closely related ATP-binding subunits from prokaryotic and eukaryotic cells. BioEssays 8: 111–116.

    Article  PubMed  CAS  Google Scholar 

  • Hochstein, L. I., and G. A. Tomlinson. 1988. The enzymes associated with denitrification. Annu. Rev. Microbiol. 42: 231–261.

    Article  PubMed  CAS  Google Scholar 

  • Hoglen, J., and T. C. Hollocher. 1986. Purification of nitric oxide reductase from Paracoccus denitrificans. Fed. Proc. 45: 1604.

    Google Scholar 

  • Hollocher, T. C. 1982. The pathway of nitrogen and reductive enzymes of denitrification. Antonie van Leeuwenhoek J. Microbiol. Serol. 48: 531–544.

    CAS  Google Scholar 

  • Hynes, R. K., A.-L. Ding, and L. M. Nelson. 1985. Denitrification by Rhizobium fredii. FEMS Microbiol. Lett. 30: 183–186.

    CAS  Google Scholar 

  • Itoh, M., S. Mizukami, K. Matsuura, and T. Satoh. 1989. Involvement of cytochrome bc1 complex and cytochrome c2 in the electron-transfer pathway for NO reduction in a photodenitrifier, Rhodobacter sphaeroides f. s. denitrificans. FEBS Lett. 244: 81–84.

    Article  Google Scholar 

  • Iwasaki, H., T. Saigo, and T. Matsubara. 1980. Copper as a controlling factor of anaerobic growth under N2O and biosynthesis of N2O reductase in denitrifying bacteria. Plant Cell Physiol. 21: 1573–1584.

    CAS  Google Scholar 

  • Iwasaki, H., and H. Terai. 1982. Analysis of N2 and N2O produced during growth of denitrifying bacteria in copper-depleted and -supplemented media. J. Gen. Appl. Microbiol. 28: 189–93.

    Article  Google Scholar 

  • Jensen, B. B., and R. H. Burris. 1986. N2O as a substrate and as a competitive inhibitor of nitrogenase. Biochemistry 25: 1083–1088.

    Article  PubMed  CAS  Google Scholar 

  • Jin, H., H. Thomann, C. L. Coyle, and W. G. Zumft. 1989. Copper coordination in nitrous oxide reductase from Pseudomonas stutzeri. J. Am. Chem. Soc. 111: 4262–4269.

    Article  CAS  Google Scholar 

  • Kaplan, W. A., and S. C. Wofsy. 1985. The biogeochemistry of nitrous oxide: a review. Adv. Aquat. Microbiol. 3: 181–206.

    Google Scholar 

  • Koike, I., and A. Hattori. 1975. Energy yield of denitrification: an estimate from growth yield in continuous culture of Pseudomonas denitrificans under nitrate-, nitrite-, and nitrous oxide-limited conditions. J. Gen. Microbiol. 88: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Körner, H., K. Frunzke, K. Döhler, and W. G. Zumft. 1987. Immunochemical patterns of distribution of nitrous oxide reductase and nitrite reductase (cytochrome cd1) among denitrifying pseudomonads. Arch. Microbiol. 148: 20–24.

    Article  PubMed  Google Scholar 

  • Körner, H., and W. G. Zumft. 1989. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl. Environ. Microbiol. 55: 1670–1676.

    PubMed  Google Scholar 

  • Krieg, N. R. 1976. Biology of the chemoheterotrophic spirilla. Bacteriol. Rev. 40: 55–115.

    PubMed  CAS  Google Scholar 

  • Kroneck, P. M. H., W. A. Antholine, J. Riester, and W. G. Zumft. 1988. The cupric site in nitrous oxide reductase contains a mixed-valence (Cu(II),Cu(I)) binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett. 242: 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Kroneck, P. M. H., W. A. Antholine, J. Riester, and W. G. Zumft. 1989. The nature of the cupric site in nitrous oxide reductase and of CuA in cytochrome c oxidase. FEBS Lett. 248: 212–213.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. S., R. E. W. Hancock, and J. L. Ingraham. 1989. Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper-containing N2O reductase. J. Bacteriol. 171: 2096–2100.

    PubMed  CAS  Google Scholar 

  • Li, P. M., J. Gelles, S. I. Chan, R. J. Sullivan, and R. A. Scott. 1987. Extended X-ray absorption fine structure of copper in CuA-depleted, p-(hydroxymercuri)benzoate-modified, and native cytochrome c oxidase. Biochemistry 26: 2091–2095.

    Article  PubMed  CAS  Google Scholar 

  • Malkin, R., and B. G. Malmström. 1970. The state and function of copper in biological systems. Adv. Enzymol. 33: 177–244.

    PubMed  CAS  Google Scholar 

  • Mancinelli, R. L., S. Cronin, and L. I. Hochstein. 1986. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans. Arch. Microbiol. 145: 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, T. 1971. Studies on denitrification. XIII. Some properties of the N2O-anaerobically grown cell. J. Biochem. 69: 991–1001.

    PubMed  CAS  Google Scholar 

  • Matsubara, T., K. Frunzke, and W. G. Zumft. 1982. Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus. J. Bacteriol. 149: 816–823.

    PubMed  CAS  Google Scholar 

  • Matsubara, T., and H. Iwasaki. 1971. Enzymatic steps of dissimilatory nitrite reduction in Alcaligenes faecalis. J. Biochem. 69: 859–868.

    PubMed  CAS  Google Scholar 

  • Matsubara, T., and H. Iwasaki. 1972. Nitric oxide-reducing activity of Alcaligenes faecalis cytochrome cd. J. Biochem. 72: 57–64.

    PubMed  CAS  Google Scholar 

  • Matsubara, T., and M. Sano. 1985. Isolation and some properties of a novel violet copper protein from a denitrifying bacterium, Alcaligenes sp. Chem. Lett. 1053–1056.

    Google Scholar 

  • Matsubara, T., and W. G. Zumft 1982. Identification of a copper protein as part of the nitrous oxide-reducing system in nitrite-respiring (denitrifying) pseudomonads. Arch. Microbiol. 132: 322–328.

    Article  CAS  Google Scholar 

  • McEwan, A. G., A. J. Greenfield, H. G. Wetzstein, J. B. Jackson, and S. J. Ferguson. 1985. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J. Bacteriol. 164: 823–830.

    PubMed  CAS  Google Scholar 

  • Michalski, W. P., D. H. Hein, and D. J. D. Nicholas. 1986. Purification and characterization of nitrous oxide reductase from Rhodopseudomonas sphaeroides f.sp. denitrificans. Biochim. Biophys. Acta 872: 50–60.

    Article  CAS  Google Scholar 

  • Minagawa, N., and W. G. Zumft. 1988. Cadmium-copper antagonism in the activation of periplasmic nitrous oxide reductase of copper-deficient cells from Pseudomonas stutzeri. Biol. Metals 1: 117–122.

    Article  CAS  Google Scholar 

  • Miyata, M., T. Matsubara, and T. Mori. 1969. Studies on denitrification. XI. Some properties of nitric oxide reductase. J. Biochem. 66: 759–765.

    PubMed  CAS  Google Scholar 

  • Mokhele, K., Y. J. Tang, M. A. Clark, and J. L. Ingraham. 1987. A Pseudomonas stutzeri outer membrane protein inserts copper into N2O reductase. J. Bacteriol. 169: 5721–5726.

    PubMed  CAS  Google Scholar 

  • Payne, W. J., M. A. Grant, J. Shapleigh, and P. Hoffman. 1982. Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species. J. Bacteriol. 152: 915–918.

    PubMed  CAS  Google Scholar 

  • Pichinoty, F., J. Bigliardi-Rouvier, M. Mandel, B. Greenway, G. Méténier, and J.-L. Garcia. 1976. The isolation and properties of a denitrifying bacterium of the genus Flavobacterium. Antonie van Leeuwenhoek J. Microbiol. Serol. 42: 349–354.

    CAS  Google Scholar 

  • Pichinoty, F., M. Mandel, and J.-L. Garcia. 1977a. Étude de six souches de Agrobacterium tumefaciens et A. radiobacter. A.n. Microbiol. (Inst. Pasteur) 128A: 303–310.

    Google Scholar 

  • Pichinoty, F., M. Mandel, and J.-L. Garcia. 1979. The properties of novel mesophilic denitrifying Bacillus cultures found in tropical soils. J. Gen. Microbiol. 115: 419–430.

    Article  Google Scholar 

  • Pichinoty, F., M. Mandel, B. Greenway, and J.-L. Garcia. 1977b. Étude de 14 bactéries dénitrifiantes appartenant au groupe Pseudomonas stutzeri isolées du sol par culture d’enrichissement en présence d’oxyde nitreux. Ann. Microbiol. (Inst. Pasteur) 128A: 75–87.

    Google Scholar 

  • Poth, M. 1986. Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl. Environ. Microbiol. 52: 957–959.

    PubMed  CAS  Google Scholar 

  • Poth, M., and D. D. Focht. 1985. 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl. Environ. Microbiol. 49: 1134–1141.

    PubMed  CAS  Google Scholar 

  • Riester, J., W. G. Zumft, and P. M. H. Kroneck. 1989. Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur. J. Biochem. 178: 751–762.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, L. A., and J. G. Kuenen. 1983. Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J. Gen. Microbiol. 129: 2847–2855.

    CAS  Google Scholar 

  • Römermann, D., and B. Friedrich. 1985. Denitrification by Alcaligenes eutrophus is plasmid dependent. J. Bacteriol. 162: 852–854.

    PubMed  Google Scholar 

  • Scott, R. A., W. G. Zumft, C. L. Coyle, and D. M. Dooley. 1989. Pseudomonas stutzeri N2O reductase contains Cu-type sites. Proc. Natl. Acad. Sci. USA 86: 4082–4086.

    Article  PubMed  CAS  Google Scholar 

  • Shapleigh, J. P., K. J. P. Davies, and W. J. Payne. 1987. Detergent inhibition of nitric-oxide reductase activity. Biochim. Biophys. Acta 911: 334–340.

    Google Scholar 

  • Shapleigh, J. P., and W. J. Payne. 1985. Nitric oxide-dependent proton translocation in various denitrifiers. J. Bacteriol. 163: 837–840.

    PubMed  CAS  Google Scholar 

  • Snyder, S. W., D. A. Bazylinski, and T. C. Hollocher. 1987. Loss of N2O reductase activity as an explanation for poor growth of Pseudomonas aeruginosa on N2O. Appl. Environ. Microbiol. 53: 2045–2049.

    PubMed  CAS  Google Scholar 

  • Snyder, S. W., and T. C. Hollocher. 1984. Nitrous oxide reductase and the 120,000 MW copper protein of N2-producing denitrifying bacteria are different entities. Biochem. Biophys. Res. Commun. 119: 588–592.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. W., and T. C. Hollocher. 1987. Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. J. Biol. Chem. 262: 6515–6525.

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudo-monads: a taxonomic study. J. Gen. Microbiol. 43: 159–271.

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer, A. H. 1988a. Dissimilatory reduction of oxidized nitrogen compounds, p. 245–303. In A. J. B. Zehnder (ed.) Biology of anaerobic microorganisms. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Stouthamer, A. H. 1988b. Bioenergetics and yields with electron acceptors other than oxygen, p. 345–437. In L. E. Erickson and D. Y.-C. Fung (ed.) Handbook on anaerobic fermentations. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Teraguchi, S., and T. C. Hollocher. 1989. Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes. J. Biol. Chem. 264: 1972–1979.

    PubMed  CAS  Google Scholar 

  • Tibelius, K. H., and R. Knowles. 1984. Uptake hydrogenase activity in denitrifying Azospirillum brasilense grown anaerobically with nitrous oxide or nitrate. J. Bacteriol. 157: 84–88.

    PubMed  CAS  Google Scholar 

  • Tiedje, J. M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium, p. 179–244. In A. J. B. Zehnder (ed.), Biology of anaerobic microorganisms. John Wiley & Sons, Inc. New York.

    Google Scholar 

  • Urata, K., and T. Satoh. 1985. Mechanism of nitrite reduction to nitrous oxide in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Biochim. Biophys. Acta 841: 201–207.

    Article  CAS  Google Scholar 

  • Urata, K., K. Shimada, and T. Satoh. 1982. Periplasmic location of nitrous oxide reductase in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Plant Cell Physiol. 23: 1121–1124.

    CAS  Google Scholar 

  • Vaughn, S., and B. K. Burgess. 1989. Nitrite: a new substrate for nitrogenase. Biochemistry 28: 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Viebrock, A., and W. G. Zumft. 1987. Physical mapping of transposon Tn5 insertions defines a gene cluster functional in nitrous oxide respiration by Pseudomonas stutzeri. J. Bacteriol. 169: 4577–4580.

    PubMed  CAS  Google Scholar 

  • Viebrock, A., and W. G. Zumft. 1988. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J. Bacteriol. 170: 4658–4668.

    PubMed  CAS  Google Scholar 

  • Weeg-Aerssens, E., J. M. Tiedje, and B. A. Averill. 1988. Evidence from isotope labeling studies for a sequential mechanism for dissimilatory nitrite reduction. J. Am. Chem. Soc. 110: 6851–6856.

    Article  CAS  Google Scholar 

  • Wijler, J., and C. C. Delwiche. 1954. Investigation on the denitrifying process in soil. Plant Soil 5: 155–169.

    Article  CAS  Google Scholar 

  • Wood, A. P., and D. P. Kelly. 1983. Autotrophic, mixotrophic and heterotrphic growth with denitrification by Thiobacillus A2 under anaerobic conditions. FEMS Microbiol. Lett. 16: 363–370.

    CAS  Google Scholar 

  • Yoshimura, T., H. Iwasaki, S. Shidara, S. Suzuki, A. Nakahara, and T. Matsubara. 1988. Nitric oxide complex of cytochrome c’ in cells of denitrifying bacteria. J. Biochem. 103: 1016–1019.

    PubMed  CAS  Google Scholar 

  • Yoshinari, T. 1980. N20 reduction by Vibrio succinogenes. Appl. Environ. Microbiol. 39: 81–84.

    PubMed  CAS  Google Scholar 

  • Zumft, W. G., C. L. Coyle, and K. Frunzke. 1985a. The effect of oxygen on chromatographic behavior and properties of nitrous oxide reductase. FEBS Lett. 183: 240–244.

    Article  CAS  Google Scholar 

  • Zumft, W. G., K. Döhler, and H. Körner. 1985b. Isolation and characterization of transposon Tn5-induced mutants of Pseudomonas perfectomarina defective in nitrous oxide respiration. J. Bacteriol. 163: 918–924.

    PubMed  CAS  Google Scholar 

  • Zumft, W. G., K. Döhler, H. Körner, S. Löchelt, A. Viebrock, and K. Frunzke. 1988a. Defects in cytochrome cd1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Arch. Microbiol. 149: 492–498.

    Article  PubMed  CAS  Google Scholar 

  • Zumft, W. G., and K. Frunzke. 1982. Discrimination of ascorbate-dependent non-enzymatic and enzymatic, membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus. Biochim. Biophys. Acta 681: 459–468.

    Article  PubMed  CAS  Google Scholar 

  • Zumft W. G., and T. Matsubara. 1982. A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett. 148: 107–112.

    Article  CAS  Google Scholar 

  • Zumft, W. G., and J. M. Vega. 1979. Reduction of nitrite to nitrous oxide by a cytoplasmic membrane fraction from the marine denitrifier Pseudomonas perfectomarinus. Biochim. Biophys. Acta 548: 484–499.

    Article  PubMed  CAS  Google Scholar 

  • Zumft, W. G., A. Viebrock, and H. Körner. 1988b. Biochemical and physiological aspects of denitrification, p. 245–279. In J. A. Cole, and S. J. Ferguson (ed.) The nitrogen and sulphur cycles. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zumft, W.G., Kroneck, P.M.H. (1990). Metabolism of Nitrous Oxide. In: Revsbech, N.P., Sørensen, J. (eds) Denitrification in Soil and Sediment. Federation of European Microbiological Societies Symposium Series, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9969-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9969-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9971-2

  • Online ISBN: 978-1-4757-9969-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics