Distribution and Diversity of Dissimilatory NO2 Reductases in Denitrifying Bacteria

  • Mark S. Coyne
  • James A. Tiedje
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 56)


Denitrification is the biological reduction of nitrogenous oxides to gaseous products during anaerobic bacterial growth. Some organisms, Thiosphaera pantotropha in particular, appear to denitrify in aerobic conditions (Robertson and Kuenen, 1984). However, denitrification can usually be delimited by these criterion (Tiedje, 1988):
  1. (1)

    It is sensitive to oxygen inhibition;

  2. (2)

    Growth yield will be proportional to the amount of nitrogenous oxide present;

  3. (3)

    Eighty percent or more of the available NO 3 or NO 2 will accumulate as N2O or N2;

  4. (4)

    NO 3 or NO 2 will be rapidly dissimilated without NH 4 + accumulation;

  5. (5)

    A dissimilatory NO 2 reductase (dNir) will be present.



Nitrite Reductase Western Immunoblot Alcaligenes Faecalis Denitrify Bacterium Cytochrome Oxidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd-el-Malek, Y., Hosny, I., and Emam, N.F., 1974, Evaluation of media used for enumeration of denitrifying bacteria. Zentralbi. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2, 129: 415.Google Scholar
  2. Barber, D., Parr, S.R., and Greenwood, C., 1976, Some spectral and steady-state kinetic properties of Pseudomonas cytochrome oxidase. Biochem. J., 157: 431.Google Scholar
  3. Betlach, M.R., 1982, Evolution of bacterial denitrification and denitrifier diversity. Antonie van Leeuwenhoek. J. Microbiol, 48: 585.PubMedCrossRefGoogle Scholar
  4. Broda, E., 1975, The history of inorganic nitrogen in the biosphere, J. Mol. Evol, 7: 87.PubMedCrossRefGoogle Scholar
  5. Cocks, G.T., and Wilson, A.C., 1972, Enzyme evolution in Enterobacteriaceae, J. Bacteriol., 110: 793.PubMedGoogle Scholar
  6. Coyne, M.S., Arunakumari, A., Tiedje, J.M., and Averill, B.A., 1989, Immunological identification and distribution of dissimilatory heure cdl and nonheme copper nitrite reductases in denitrifying bacteria, Appl. Environ. Microbiol., 55: 2924.PubMedGoogle Scholar
  7. De Vos, P., and De Ley, J., 1983, Intra-and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons, Int. J. Syst. Bact., 33: 487.CrossRefGoogle Scholar
  8. Dispirito, A.A., Taaffe, L.R., Lipscomb, J.D., and Hooper, A.B., 1985, A ‘blue’ copper oxidase from Nitrosomonas europaea, Biochem. Biophys. Acta., 827: 320.CrossRefGoogle Scholar
  9. Fox, G.E., et al., 1980, The phylogeny of prokaryotes, Science, 209: 457.PubMedCrossRefGoogle Scholar
  10. Gamble, T.N., Betlach, M.R., and Tiedje, J.M., 1977, Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol., 33: 926.PubMedGoogle Scholar
  11. Grant, M.A., and Hochstein, L.I., 1984, A dissimilatory nitrite reductase in Paracoccus halodenitrificans, Arch. Microbiol., 137: 79.CrossRefGoogle Scholar
  12. Gudat, J.C., Singh, J., and Wharton, D.C., 1973, Cytochrome oxidase from Pseudomonas aeruginosa. I. Purification and some properties, Biochim. Biophys. Acta., 292: 376.PubMedCrossRefGoogle Scholar
  13. Hochstein, L.I., and Tomlinson, G.A., 1988, The enzymes associated with denitrification, Ann. Rev. Microbiol., 42: 231.CrossRefGoogle Scholar
  14. Howe, J.G., and Hershey, J.W.B., 1981, A sensitive immunoblotting method for measuring protein synthesis initiation factor levels in lysates of Escherichia Coli, J. Biol. Chem., 256: 1 2836.Google Scholar
  15. Howe, J.G., and Hershey, J.W.B., 1984, The rates of evolutionary divergence of initiation factors IF2 and IF3 in various bacterial species determined quantitatively by immunoblotting, Arch. Microbiol., 140: 187.PubMedCrossRefGoogle Scholar
  16. Hulse, C.L., Tiedje, J.M., and Averill, B.A., 1988, A spectrophotometric assay for dissimilatory nitrite reductases, Anal. Biochem., 172: 420.PubMedCrossRefGoogle Scholar
  17. Iwasaki, H., Shidara, S., Suzuki, H., and Mori, T., 1963, Studies on denitrification. VII. Further purification and properties of denitrifying enzyme. J. Biochem., 53: 299.PubMedGoogle Scholar
  18. Iwasaki, H., and Matsubara, T., 1971, Cytochrome c-557 (551) and cytochrome cd of Alcaligenes faecalis, J. Biochem., 69: 847.Google Scholar
  19. Iwasaki, H., and Matsubara, T., 1972, A nitrite reductase from Achromobacter cycloclastes, J. Biochem., 71: 645.Google Scholar
  20. Iwasaki, H., Noji, S., and Shidara, S., 1975, Achromobacter cycloclastes nitrite reductase: The function of copper, amino acid composition, and ESR spectra, J. Biochem., 78: 355.Google Scholar
  21. Jeter, R.M., and Ingraham, J.L., 1981, The denitrifying procaryotes, in: “The Procaryotes,” M.P. Starr, ed., Springer-Verlag, New York.Google Scholar
  22. Jones, C.W., 1985, The evolution of bacterial respiration, in: “Evolution of Prokaryotes,” K.H. Schleifer, and Stackerbrandt, E., eds., Academic Press, London.Google Scholar
  23. Kakutani, T., Watanabe, H., Arima, K., and Beppu, T., 1981, Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S6, J. Biochem., 89: 453.PubMedGoogle Scholar
  24. Kashem, M.A., Dunford, H.B., Liu, M-Y., Payne, W.J., and LeGall, J., 1987, Kinetic studies of the copper nitrite reductase from Achromobacter cycloclastes and its interaction with a blue copper protein, Biochem. Biophys. Res. Comm., 145: 563.PubMedCrossRefGoogle Scholar
  25. Koike, I., and Hattori, A., 1975, Energy yield of denitrification: An estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite, and nitrous oxide-limited conditions, J. Gen. Microbiol., 88: 11.PubMedCrossRefGoogle Scholar
  26. Körner, H., Frunzke, K., Döhler, K., and Zumft, W.G., 1987, Immunochemical patterns of distribution of nitrous oxide reductase and nitrite reductase (cytochrome cdl) among denitrifying pseudomonads, Arch. Microbiol., 148: 20.PubMedCrossRefGoogle Scholar
  27. LaLande, R., and Knowles, R., 1987, Cytoplasmic content of Azospirillum brasilense sp7 grown under aerobic and denitrifying conditions, Can. J. Microbiol., 33: 151.CrossRefGoogle Scholar
  28. LeGall, J., Payne, W.J., Morgan, T.V., and DerVartanian, D., 1979, On the purification of nitrite reductase from Thiobacillus denitrificans and its reaction with nitrite under reducing conditions, Biochem. Biophys. Res. Comm., 87: 355.PubMedCrossRefGoogle Scholar
  29. Liu, M-C., Payne, W.J., Peck, H.D., and LeGall, J., 1983, Comparison of cytochromes from anaerobically and aerobically grown cells of Pseudomonas perfectomarinus. J. Bacteriol., 154: 278.Google Scholar
  30. Liu, M-Y., Liu, M-C., Payne, W.J., and LeGall, J., 1986, Properties and electron transfer specificity of copper proteins from the denitrifier Achromobacter cycloclastes, J. Bacteriol., 166: 604.Google Scholar
  31. Mancinelli, R.L., Cronin, S., and Hochstein, L.I., 1986, The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans, Arch. Microbiol., 145: 202.CrossRefGoogle Scholar
  32. Mancinelli, R.L., and McKay, C.P., 1988, The evolution of nitrogen cycling, Origins of Life and Evolution of the Biosphere, 18: 311.PubMedCrossRefGoogle Scholar
  33. Masuko, M., Iwasaki, H., Sakurai, T., Suzuki, S., and Nakahara, A., 1984, Characterization of nitrite reductase from a denitrifier, Alcaligenes sp. NCIB 11015. A novel copper protein, J. Biochem., 96: 447.PubMedGoogle Scholar
  34. Michalski, W.P., and Nicholas, D.J.D., 1985, Molecular characterization of copper-containing nitrite reductase from Rhodopseudomonas sphaeroides forma sp. denitrificans, Biochim Biophys. Acta., 828: 130.CrossRefGoogle Scholar
  35. Michalski, W.P., and Nicholas, D.J.D., 1988, Immunological patterns of distribution of bacterial denitrifying enzymes, Phytochemistry, 27: 2451.CrossRefGoogle Scholar
  36. Miller, D.J., and Wood, P.M., 1983, The soluble cytochrome oxidase of Nitrosomonas europaea, J. Gen. Microbiol., 129: 1645.Google Scholar
  37. Newton, N., 1969, The two-haem nitrite reductase of Micrococcus denitrificans, Biochim. Biophys. Acta., 185: 316.CrossRefGoogle Scholar
  38. Ohkubo, S., Iwasaki, H., Hori, H., and Osawa, S., 1986, Evolutionary relationship of denitrifying bacteria as deduced from 5S rRNA sequences, J. Biochem., 100: 1261.PubMedGoogle Scholar
  39. Palleroni, N.J., Kunisawa, R., Contopoulou, R., and Doudoroff, M., 1973, Nucleic acid homologies in the genus Pseudomonas, Int. J. Syst. Bact., 23: 333.CrossRefGoogle Scholar
  40. Radcliffe, B.C., and Nicholas, D.J.D., 1968, Some properties of a nitrite reductase from Pseudomonas denitrificans, Biochim. Biophys. Acta., 153: 545.CrossRefGoogle Scholar
  41. Ritchie, G.A.F., and Nicholas, D.J.D., 1974, The partial characterization of purified nitrite reductase and hydroxylamine oxidase from Nitrosomonas europaea, Biochem. J., 138: 471.Google Scholar
  42. Robertson, L.A., 1988, “Aerobic denitrification and heterotrophic nitrification in Thiosphaera pantotropha and other bacteria,” Ph.D. Thesis, University of Delft.Google Scholar
  43. Robertson, L.A., and Kuenen, J.G., 1984, Aerobic denitrification: a controversy revived, Arch. Microbiol., 139: 351.CrossRefGoogle Scholar
  44. Römermann, D., and Friedrich, B., 1985, Denitrification by Alcaligenes eutrophus is plasmid dependent, J. Bacteriol., 162: 852.PubMedGoogle Scholar
  45. Saraste, M., and Kuronen, T., 1978, Interaction of Pseudomonas cytochrome cd/ with the cytoplasmic membrane, Biochem. Biophys. Acta., 513: 117.PubMedCrossRefGoogle Scholar
  46. Sawada, E., and Satoh, T., 1980, Periplasmic location of dissimilatory nitrate and nitrite reductase in a denitrifying phototrophic bacterium Rhodopseudomonas sphaeroides forma sp. denitrificans, Plant Cell Physiol., 21: 205.Google Scholar
  47. Sawhney, V., and Nicholas, D.J.D., 1978, Sulphide-linked nitrite reductase from Thiobacillus denitrificans with cytochrome oxidase activity: Purification and properties, J. Gen. Microbiol., 106: 119.CrossRefGoogle Scholar
  48. Shapleigh, J.P., and Payne, W.J., 1985, Differentiation of cd/ cytochrome and copper nitrite reductase production in denitrifiers. FEMS Microbiol. Lett., 26: 275.Google Scholar
  49. Shioi, Y., Doi, M., Arata, H., and Takamiya, K., 1988, A denitrifying activity in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCH.114, Plant Cell Physiol., 29: 861.Google Scholar
  50. Tiedje, J.M., 1982, Denitrification, in: “Methods of Soil Analysis: Part 2 - Chemical and Microbiological Properties,” A.L. Page, ed., ASA Inc., Madison.Google Scholar
  51. Tiedje, J.M., 1988, Ecology of denitrification and dissimilatory nitrate reduction to ammonia, in: “Biology of Anaerobic Microorganisms,” A.J.B. Zehnder, ed., Wiley, New York.Google Scholar
  52. Turley, S., Adman, E.T., Sieker, L.C., Liu, M.-Y., Payne, W.J., and LeGall, J., 1988, Crystallization of nitrite reductase from Achromobacter cycloclastes, J. Mol. Biol, 200: 417.PubMedCrossRefGoogle Scholar
  53. Wilson, A.C., Carlson, S.S., and White, T.J., 1977, Biochemical evolution, Ann. Rev. Biochem., 46: 573.PubMedCrossRefGoogle Scholar
  54. Woese, C.R., 1987, Bacterial evolution, Microbiol. Rev., 51: 221.PubMedGoogle Scholar
  55. Wood, P.M., 1978, Periplasmic location of the terminal reductase in nitrite respiration, FEBS Lett., 92: 214.PubMedCrossRefGoogle Scholar
  56. Yamanaka, T., and Okunuki, K., 1963, Crystalline Pseudomonas cytochrome oxidase: I. Enzymic properties with special reference to the biological specificity, Biochim. Biophys. Acta., 67: 379.PubMedCrossRefGoogle Scholar
  57. Zumft, W.G., Sherr, B.F., and Payne, W.J., 1979, A reappraisal of the nitric-oxide-binding protein of denitrifying Pseudomonas, Biochem. Biophys. Res. Comm., 88: 1230.CrossRefGoogle Scholar
  58. Zumft, W.G., Gotzmann, D.J., and Kroneck, P.M.H., 1987, Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens, Eur. J. Biochem., 168: 301.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Mark S. Coyne
    • 1
  • James A. Tiedje
    • 1
  1. 1.Department of Crop and Soil SciencesMichigan State UniversityEast LansingUSA

Personalised recommendations