Bio-Inorganic Aspects of Denitrification: Structures and Reactions of NxOy Compounds and Their Interaction with Iron and Copper Proteins

  • Peter M. H. Kroneck
  • Walter G. Zumft
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 56)


The nitrogen cycle has received considerable attention in recent years because of its ecological importance (Knowles, 1982; Sprent, 1987; Ullrich et al., 1987; Cole and Ferguson, 1988; Zehnder, 1988). Nitrogen is an essential constituent of many biomolecules which are important for life, e.g. amino acids, proteins, or DNA. In the process of nitrogen fixation dinitrogen is reduced to ammonia. This reaction is catalyzed by nitrogenase, a complex multi-metal enzyme (Smith, 1986). On the other hand, dinitrogen is released into the atmosphere by the activities of a large variety of bacteria (Cole and Ferguson, 1988; Zehnder, 1988). Oxidized nitrogen compounds are used as electron acceptors and are finally reduced to nitrous oxide, nitric oxide, and dinitrogen. Nitrogen oxides are ubiquitous in the environment, and there is a considerable concern about their effect on health (Lee, 1980). Oxidation of reduced (-3) valency nitrogen species may play an important role in the biological formation of carcinogenic nitrosamines (Zehnder, 1988). Model studies suggest the hypothesis that the formation of these carcinogenic compounds may involve metal centres capable of catalysing both oxidation of reduced nitrogen species and subsequent formation of an N-N bond leading to the nitrosamine coordinated to the metal centre (Stershic et al., 1988).


Nitric Oxide Electron Paramagnetic Resonance Nitrous Oxide Electron Paramagnetic Resonance Signal Nitrite Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addison, C.C., Logan, N., Wallwork, S.C., and Garner, C.D., 1971, Structural aspects of coordinated nitrate groups, Quart. Rev., 25: 289–322.CrossRefGoogle Scholar
  2. Aerssens, E., Tiedje, J.M., and Averill, B.A., 1986, Isotope labeling studies on the mechanism of N-N bond formation in denitrification, J. Biol. Chem., 261: 9552–9556.Google Scholar
  3. Allen, M.B., and Van Niel, C.B., 1952, Experiments on bacterial denitrification, J. Bacteriol, 64: 397–412.PubMedGoogle Scholar
  4. Banks, R.G.S., Henderson, R.J., and Pratt, J.M., 1969, Reactions of gases in solution. Part III. Some reactions of nitrous oxide with transition metal complexes, J. Chem. Soc.(A): 2886–2889.Google Scholar
  5. Barley, M.H., Rhodes, M.R., and Meyer, T.J., 1987, Electrocatalytic reduction of nitrite to nitrous oxide and ammonia based on the N-methylated, cationic iron porphyrin complex [Fe(III)(H2O)(TMPyP)]s+, Inorg. Chem., 26: 1746 1750.Google Scholar
  6. Bhaduri, S., Johnson, B.F.G., Pickard, A., Raithby, P.R., Sheldrick, G.M., and Zuccaro, C.I., 1977, Nitrosyl coupling in transition-metal complexes: The molecular structure of [(PPH3),Pt(N2O,)], J. Chem. Soc. Chem. Commun., 354–355.Google Scholar
  7. Blair, D.F., Witt, S.N., and Chan, S.I., 1985, Mechanism of cytochrome c oxidasecatalyzed dioxygen reduction at low temperatures. Evidence for two intermediates at the three-electron level and entropic promotion of the bond-breaking step, J. Am. Chem. Soc., 107: 7389–7399.Google Scholar
  8. Boelens, R., Rademaker, H., Weyer, R., and Van Gelder, B.F., 1984, The cytochrome c oxidase-azide-nitric oxide complex as a model for the oxygen-binding site, Biochim. Biophys. Acta. 765: 196–209.Google Scholar
  9. Bray, R.C., 1988, The inorganic biochemistry of molybdoenzymes, Quart. Rev. Biophys., 21: 299–329.CrossRefGoogle Scholar
  10. Butler, A.R., Glidewell, C., and Min-Hsin, L., 1988, Nitrosyl complexes of iron-sulfur clusters, Adv. Inorg. Chemistry, 32: 335–393.CrossRefGoogle Scholar
  11. Buxton, G.V., Sellers, R.M., and Cracken, D.R., 1976, Pulse radiolysis study of the monovalent cadmium, cobalt, nickel and zinc in aqueous solution. Part 2. Reactions of the monovalent ions, J. Chem. Soc. Faraday Trans., 72: 1464–1476.CrossRefGoogle Scholar
  12. Chance, B., Saronio, C., and Leigh, Jr. J.S., 1975, Functional intermediates in the reaction of cytochrome oxidase with oxygen, Proc. Natl. Acad. Sci. (USA) 72: 1635–164CrossRefGoogle Scholar
  13. Chang, C.K.J., 1985, On the structure of heme d1, J. Biol. Chem., 260: 9520–9522.PubMedGoogle Scholar
  14. Clore, G.M. and Chance, E.M.,1978, The mechanism of reaction of ferricyanidepretreated mixed-valence state membrane-bound cytochrome oxidase with oxygen at 173 K, Biochem. J 173: 811–820.Google Scholar
  15. Colburn, C.B., 1966, Developments in inorganic nitrogen chemistry. Vol. 1 and 2. Elsevier Publishing Company, Amsterdam, London, New YorkGoogle Scholar
  16. Cole, J.A., and Ferguson, S.J., (ed.), 1988, The nitrogen and sulphur cycles. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, SidneyGoogle Scholar
  17. Coyle, C.L., Zumft, W.G., Kroneck, P.M.H., Koerner, H., and Jakob, W., 1985, Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme, Eur. J. Biochem., 153: 459–467.PubMedCrossRefGoogle Scholar
  18. Craig, J.A. and Holm, R.H., 1989, Reduction of nitrate to nitrite by molybdenum-mediated atom transfer. A nitrate reductase analogue reaction system, J. Am. Chem. Soc., 111: 2111–2115.CrossRefGoogle Scholar
  19. Cramer, S.P., Solomonson, L.P., Adams, M.W.W., and Mortenson, L.E.J., 1984, Molybdenum sites of Escherichia coli and Chlorella vulgaris nitrate reductase, J. Am. Chem. Soc., 106: 1467–1471.CrossRefGoogle Scholar
  20. Dell, R.M., Stone, F.S., and Tiley, P.F., 1953a, The adsorption of oxygen and other gases on copper, Trans. Farad. Soc., 49: 195–201.CrossRefGoogle Scholar
  21. Dell, R.M., Stone, F.S., and Tiley, P.F., 1953b, The decomposition of nitrous oxide on cuprous oxide and other oxide catalysts, Trans. Farad. Soc., 49: 201–209.CrossRefGoogle Scholar
  22. Delwiche, C.C., 1981, Denitrification, nitrification, and atmospheric nitrous oxide, John Wiley Sons, New York, Chichester, Brisbane, TorontoGoogle Scholar
  23. Deno, N.C., Berkheimer, H.E., Evans, W.L., and Peterson, H.J., 1959, Carbonium ions.VII. An evaluation of the HR acidity function in aqueous perchloric and nitric acids, J. Am. Chem. Soc., 81: 2344–2347.CrossRefGoogle Scholar
  24. Diamantis, A.A. and Sparrow, G.J., 1970, Nitrous oxide complexes: The isolation of pentammine(dinitrogenoxide) ruthenium(II) tetrafluoroborate, J. Chem. Soc. Chem. Commun., 819–820Google Scholar
  25. Dobry, A. and Boyer, F., 1945, Sur le nitrosulfure de fer ou sel de Roussin–action antiseptique, Ann. Inst. Pasteur, 71: 455–462.Google Scholar
  26. Doyle, M.P., Mahapatro, S.N., Broene, R., and Guy, J.K., 1988, Oxidation and reduction of hemoproteins by trioxodinitrate(II). The role of nitrosyl hydride and nitrite, J. Am. Chem. Soc., 110: 593–599.CrossRefGoogle Scholar
  27. Einarsdottir, O. and Caughey, W.X., 1988, Interactions of the anesthetic nitrous oxide with bovine heart cytochrome c oxidase, J. Biol. Chem., 263: 9199–9205.PubMedGoogle Scholar
  28. Eisenberg, R. and Meyer, C.D., 1975, The coordination chemistry of nitric oxide, Acc. Chem. Res., 8: 26–34.CrossRefGoogle Scholar
  29. Elschenbroich, Ch., and Salzer, A., 1988, Organometallchemie, 2nd ed, B.G. Teubner, Stuttgart.CrossRefGoogle Scholar
  30. Enemark, J.H. and Feltham, R.D., 1974, Principles of structure, bonding, and reactivity for metal nitrosyl complexes, Coord. Chem. Rev., 13: 339–406.CrossRefGoogle Scholar
  31. Ferguson, S.J., 1987, Denitrification: a question of the control and organization of electron and ion transport, Trends Biochem. Sci., 12: 354–357.CrossRefGoogle Scholar
  32. Fu-Tai Tuan, D. and Hoffmann, R., 1985, N vs. O linkage and u vs Jr bonding in transition-metal complexes of N2O and NCO-, Inorg. Chem., 24: 871–876.CrossRefGoogle Scholar
  33. Garber, E.A. and T.C. Hollocher, 1982, Positional isotope equivalence of nitrogen in N2O produced by the denitrifying bacterium Pseudomonas stutzeri, J. Biol. Chem., 257: 4705–4708.PubMedGoogle Scholar
  34. Goretski, J. and Hollocher, T.C., 1988, Trapping of nitric oxide produced during denitrification by extracellular hemoglobin, J.Biol.Chem., 263: 2316–2323.PubMedGoogle Scholar
  35. Gorren, A.C.F., De Boer, E., and Weyer, R., 1987, The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes, Biochim. Biophys. Acta., 916: 38–47.PubMedCrossRefGoogle Scholar
  36. Greenwood, N.N., and Earnshaw, A., 1985, Chemistry of the elements. Pergamon Press, Oxford, New York, Toronto, Sidney, Paris, Frankfurt.Google Scholar
  37. Hathaway, B.J. and Billing, D.E., 1970, The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion, Coord. Chem. Rev., 5: 143–207.CrossRefGoogle Scholar
  38. Henry, Y., and Bessières, P., 1984, Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase, Biochimie, 66: 259–289.PubMedCrossRefGoogle Scholar
  39. Hoskins, B.F., Whillans, F.D., Dale, P.H., and Hodgkin, D.C., 1969, The structure of the red nitrosylpentaammine cobalt(III) cation, J. Chem. Soc. Chem. Commun., 69–70.Google Scholar
  40. Hughes, M.N., 1968, Hyponitrites, Quart. Rev., 22: 1–13.CrossRefGoogle Scholar
  41. Hulse, C.L. and Averill, B.A., 1989, Evidence for a copper-nitrosyl intermediate in denitrification by the copper-containing nitrite reductase of “Achromobacter cycloclastes”, J. Am. Chem. Soc., 111: 2322–2323.CrossRefGoogle Scholar
  42. Hyman, M.R., and Arp, D.J., 1988, Acetylene inhibition of metalloenzymes, Anal. Biochem., 173: 207–220.PubMedCrossRefGoogle Scholar
  43. Johnson, J.L. and Rajagopolan, K.V., 1982, Structural and metabolic relationship between molybdenum cofactor and urothione, Proc. Natl. Acad. Sci. (USA) 79: 6856–6860.CrossRefGoogle Scholar
  44. Jones, K., 1975, The chemistry of nitrogen. Pergamon Press, Oxford, New York, Toronto, Sidney, Paris, Braunschweig.Google Scholar
  45. Jubran, N., Ginzburg, G., Cohen, H., Koresh, Y., and Meyerstein, D., 1985, Stabilization of the monovalent nickel complex with 1,4,8,11-tetraazacyclotetradecane in aqueous solution by N- and C-methylation. An electrochemical and pulse radiolysis study, Inorg. Chem., 24: 251–258.CrossRefGoogle Scholar
  46. Jug, K., 1978, Bond order orbitals and eigenvalues, J. Am. Chem. Soc., 100: 6581–6586.CrossRefGoogle Scholar
  47. Karthein, R., Nastainczyk, W., and Ruf, H., 1987, EPR study of ferric native prostaglandin H synthase and its ferrous NO derivative, Eur. J. Biochem., 166: 173–180.PubMedCrossRefGoogle Scholar
  48. Kim, C-H. and Hollocher, T.C., 1984, Catalysis of nitrosyl transfer reactions by dissimilatory nitrite reductase (cytochrome c,d1), J. Biol. Chem., 259: 2092–2099.PubMedGoogle Scholar
  49. Knowles, R., 1982, Denitrification, Microbiol.Rev., 46: 43–70.PubMedGoogle Scholar
  50. Koike, I. and Hattori, A., 1975, Energy yield of denitrification: An estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite-, and nitrous oxide limited conditions, J. Gen. Microbiol., 88: 11–19.PubMedCrossRefGoogle Scholar
  51. Kroneck, P.M.H., Antholine, W.E., Riester, J., and Zumft, W.G., 1988, The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II),Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation, FEBS Lett., 242: 751–762.CrossRefGoogle Scholar
  52. Kroneck, P.M.H., Antholine, W.E., Riester, J., and Zumft, W.G., 1989, The nature of the cupric site in nitrous oxide reductase and of CuA in cytochrome ç oxidase, FEBS Lett., 242: 212–213.CrossRefGoogle Scholar
  53. Laane, J. and Ohlsen, J.R., 1980, Characterization of nitrogen oxides by vibrational spectroscopy, Prog. Inorg. Chemistry, 27: 465–513.CrossRefGoogle Scholar
  54. Lee, S.D., 1980, Nitrogen oxides and their effects on health. Ann Arbor Science, Ann Arbor.Google Scholar
  55. Liang, J. and Burris, R., 1988, Interactions among N2, N2O, and C2H, as substrates and inhibitors of nitrogenase from Azotobacter vinelandii, Biochemistry, 27: 6726–6732.CrossRefGoogle Scholar
  56. Loechler, E.L., Schneider, A.M., Schwartz, D.B., and T.G. Hollocher, 1987, The covalent electrophilic catalysis of the breakdown of hyponitrite to nitrous oxide by aldehydes, ketones, and carbon dioxide, J.Am.Chem.Soc., 109: 3076–3087.CrossRefGoogle Scholar
  57. Malkin, R. and Malmstroem, B.G., 1970, The state and function of copper in biological systems, Adv.Enzymol., 33: 177–244.PubMedGoogle Scholar
  58. Martin, C.T., Morse, R.H., Kanne, R.M., Gray, H.B., Malmstroem, B.G., and Chan, S.I., 1981, Reactions of nitric oxide with tree and fungal laccase, Biochemistry, 20: 5147–5155.PubMedCrossRefGoogle Scholar
  59. McCarthy, J.E.G. and Ferguson, S.J., 1981, Estimation with an ion-selective electrode of the membrane potential in cells of Paracoccus denitrificans from the uptake of the butyltriphenyiphosphonium cation during aerobic and anaerobic respiration, Biochem. J., 196: 311–321.PubMedGoogle Scholar
  60. McCleverty, J.A., 1979, The reactions of nitric oxide coordinated to transition metals, Chem.Rev., 79: 53–76.CrossRefGoogle Scholar
  61. Messerschmidt, A., Rossi, A., Ladenstein, R., Huber, R., Bolognesi, M., Gatti, M., Marchesini, A., Petruzzelli, R., and Finazzi-Agro,A., 1989, X-Ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands, J.Mol.Biol., 206: 513–529.PubMedCrossRefGoogle Scholar
  62. Mozen, M.M. and Burris, R.H., 1954, The incorporation of 15N-labelled nitrous oxide by nitrogen fixing agents, Biochim.Biophys.Acta., 14: 577–578.PubMedCrossRefGoogle Scholar
  63. Nelson, M.J., 1987, The nitric oxide complex of ferrous soybean lipoxygenase-1. Substrate, pH, and ethanol effects on the active-site iron, J.Biol.Chem., 262: 12137–12142.PubMedGoogle Scholar
  64. Nerrissian, A.M., Babayan, M.A., Sarkassian, L.K., Samkhanian, E.G., and Nalbandyan, R.M., 1985, Studies on plantacyanin.II. NMR data, redox properties reaction with nitrite and the formation of complex with plastocyanin, Biochim.Biophys.Acta., 830: 195–205.CrossRefGoogle Scholar
  65. Ohnishi,T., LoBrutto, R., Salerno, J.C., Bruckner, R.C., and Frey, R.F., 1982, Spatial relationship between cytochrome a and a3, J.Biol.Chem., 257: 14821–14825.Google Scholar
  66. Olson, L.W., Schaeper, D., Lancon, D., and Kadish, K.M., 1982, Characterization of several novel iron nitrosyl porphyrins, J.Am.Chem.Soc., 104: 2042–2044.CrossRefGoogle Scholar
  67. Palmer, G., 1982, Electron paramagnetic resonance of hemoproteins, In:“Iron porphyrins” (Lever, A.B.P. and Gray, H.B., ed.) Vol. II, pp. 43–88, Addison-Wesley Publishing Company, London, Amsterdam, Don Mills,Ontario, Sidney, Tokyo.Google Scholar
  68. Palmer, R.M.J., Ferrige, A.G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327: 524–526.PubMedCrossRefGoogle Scholar
  69. Pu, L.S., Yamamoto, A., and Ikeda, S., 1969, Catalytic reduction of nitrous oxide with nitrogentris (triphenylphosphine) cobalt hydride, J.Chem.Soc.Chem. Commun., 189–190.Google Scholar
  70. Reddy, D., Lancaster, J.R., and Cornforth, D.P., 1983, Nitrite inhibition of Clostridium botulinum: Electron spin resonance detection of iron-nitric oxide complexes, Science, 221: 769–770.Google Scholar
  71. Riester, J., 1989, Distickstoffoxid-Reduktase aus Pseudomonas stutzeri, ein Multikupferenzym in denitrifizierenden Bakterien: Physikochemische Untersuchungen zur Struktur and katalytischen Funktion. Ph.D. Thesis, Universitaet Konstanz.Google Scholar
  72. Riester, J., Zumft, W.G., and Kroneck, P.M.H., 1989, Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme, Eur.J.Biochem., 178: 751–762.PubMedCrossRefGoogle Scholar
  73. Scheidt, W.R. and Lee, Y.J., 1987, Recent advances in the stereochemistry of metallo tetrapyrroles, Struct. Bonding, 64: 1–72.CrossRefGoogle Scholar
  74. Scholten, J.J.F. and Konvalinka, J.A., 1969, Reaction of nitrous oxide with copper surfaces, Trans.Farad.Soc., 65: 2465–2473.CrossRefGoogle Scholar
  75. Schwab, G.-M. and Drikos, G., 1940, Katalytische Reaktion von Stickoxydul mit Kohlenoxyd an Kupfer und Kupferoxyd, Z.Phys.Chem. A, 186: 348–358.Google Scholar
  76. Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M., 1989, Pesudomonas stutzeri N2O reductase contains CuA-type sites, Proc.Natl.Acad. Sci.(USA), 86: 4082–4086.Google Scholar
  77. Sharma, V., Traylor, T.G., Gardiner, R., and Mizukami, H., 1987, Reaction of nitric oxide with heure proteins and model compounds of hemoglobin, Biochemistry, 26: 3837–3843.PubMedCrossRefGoogle Scholar
  78. Shearer, G. and Kohl, D.H., 1988, Nitrogen isotopic fractionation and 180 exchange in relation to the mechanism of denitrification of nitrite by Pseudomonas stutzeri, J.Biol.Chem., 263: 13231–13245.Google Scholar
  79. Simmons, C.J., Hathaway, B.J., Amornjarusiri, K., Santarsiero, B.D., and Clearfield, A., 1987, The first determination of the energy difference between solid-state conformers by x-ray diffraction: 1. The crystal structure of the Pseudo-Jahn-Teller complex (nitrito)bis(2,2’-bipyridyl)copper(II)nitrate at 20, 100, 165 and 296 K and of its isostructural zinc(II) analogue at 295 K. 2. The possibility of using x-ray diffraction to characterize adiabatic potential energy surfaces and relative ligand strengths, J.Am.Chem.Soc., 109: 1947–1958.CrossRefGoogle Scholar
  80. Smith, B.E., 1986, Biologische Stickstoff-Fixierung, Nachr.Chem.Tech.Lab., 34: 308–317.CrossRefGoogle Scholar
  81. Solomon, E.I., Penfield, K.W., and Wilcox, D.E., 1983, Active sites in copper proteins. An electronic structure overview, Struct. Bonding, 53: 1–57.CrossRefGoogle Scholar
  82. Sowa, S., Dong, A., Roos, E.E., and Caughey, W.S., 1987, The anesthetic nitrous oxide affects dioxygen activity by bovine heart and bean seed mitochondrial particles, Biochem.Biophys.Res.Commun., 144: 643–648.PubMedCrossRefGoogle Scholar
  83. Sprent, J.I., 1987, The ecology of the nitrogen cycle. Cambridge University Press., Cambridge, New York, New Rochelle, Melbourne, Sidney.Google Scholar
  84. Stedman, G., 1979, Reactions of inorganic nitrogen compounds, Adv.Inorg.Radiochem., 22: 113–170.CrossRefGoogle Scholar
  85. Stershic, M.T., Keefer, L.K., Sullivan, B.P., and Meyer, T.J., 1988, Formation of complexed nitrosamines by oxidation of coordinated ammonia in the presence of secondary amines, J.Am.Chem.Soc., 110: 6884–6885.CrossRefGoogle Scholar
  86. Stevens, T.H., Brudvig, G.W., Bocian, D.F., and Chan, S.I., 1979Google Scholar
  87. Structure of cytochrome a3 Cuâ3 couple in cytochrome c oxidase as revealed by nitri oxide binding studies, Proc.Natl.Acad.Sci.(USA) 76: 3320–3324.Google Scholar
  88. Stiefel, E.I., 1973, Proposed molecular mechanism for the action of molybdenum in enzymes: Coupled proton and electron transfer, Proc.Natl.Acad.Sci.(USA), 70: 988–992.CrossRefGoogle Scholar
  89. Suguira, Y., T. Suzuki, H. Kawabe, H. Tanaka, and K. Watanahe,1982, Spectroscopic studies on bleomycin-iron complexes with carbon monoxide, nitric oxide, azide, cyanide and comparison with iron-porphyrin complexes. Biochim.Biophys.Acta., 716: 38–44.Google Scholar
  90. Suzuki, S., Yoshimura, T., Nakahara, A., Iwasaki, H., Shidara, S., and Matsubara, T., 1987, Electronic and magnetic circular dichroism spectra of pentacoordinate nitrosylhemes in cytochromes c’ from non-photosynthetic bacteria and their model complexes, Inorg.Chem., 26: 1006–1008.CrossRefGoogle Scholar
  91. Tait, M., Hoffman, M.Z., and Hayon, E., 1976a, The reactivity of cobalt(I) complexes containing unsaturated macrocylic ligands in aqueous solution, J.Am.Chem.Soc., 98: 86–93.CrossRefGoogle Scholar
  92. Tait, A.M., Hoffman, M.Z., and Hayon, E., 1976b, Reactivity of nickel(I) complexes containing 14-membered macrocyclic ligands in aqueous solution, Inorg.Chem., 15: 934–939.CrossRefGoogle Scholar
  93. Tsubaki, M., Hiwatashi, A., Ichikawa, Y., and Hori, H., 1987, Electron paramagnetic resonance study of ferrous cytochrome P-4505,-nitric oxideGoogle Scholar
  94. complexes: Effects of cholesterol and its analogues, Biochemistry, 26: 4527–4534.Google Scholar
  95. Ullrich, W.R., Aparicio, P.J., Syrett, P.J., and Castillo, F., (ed.), 1987, Inorganic nitrogen metabolism. Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.Google Scholar
  96. Van der Deen, H., and Hoving, H., 1977, Nitrite and nitric oxide treatment of Helix pomatia hemocyanin: Single and double oxidation of the active site, Biochemistry, 16: 3519–3525.PubMedCrossRefGoogle Scholar
  97. Van Leeuwen, F.X.R., Weyer, R., Van Gelder, B.F., Avigliano, V., and Mondovi, B., 1975, The interaction of nitric oxide with ascorbate oxidase, Biochim.Biophys.Acta., 403: 285–291.PubMedCrossRefGoogle Scholar
  98. Vaughan, G.A., Rupert, P.B., and Hillhouse, G.L., 1987, Selective 0-atom transfer from nitrous oxide to hydride and aryl ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives, J.Am.Chem.Soc., 109: 5538–5539.CrossRefGoogle Scholar
  99. Vaughan, G.A., Hillhouse, G.L., Lum, R.T., Buchwald, S.L., and Rheingold, A.L., 1988, Oxygen-atom transfer from nitrous oxide. Synthesis and structure of a zirconocene oxametallacyclobutene complex, J.Am.Chem.Soc., 110: 7215–7217.CrossRefGoogle Scholar
  100. Verplaetse, J., Van Tornont, P., Defreyn, G., Witters, R., and Lontie, R., 1979, The reaction of nitrogen monoxide and of nitrite with deoxyhemocyanin and methemocyanin of Helix pomatia, Eur.J.Biochem., 95: 327–331.CrossRefGoogle Scholar
  101. Wayland, B.B. and Olson, L.W., 1974, Spectroscopic studies and bonding model for nitric oxide complexes of iron porphyrins, J.Am.Chem.Soc., 96: 6037–6041.PubMedCrossRefGoogle Scholar
  102. Weeg-Aerssens, E., Tiedje, J.M., and Averill, B.A., 1987, The mechanism of microbial denitrification, J.Am.Chem.Soc., 109: 7214–7215.CrossRefGoogle Scholar
  103. Weeg-Aerssens, E., Tiedje, J.M., and Averill, B.A., 1988, Evidence from isotope labeling studies for a sequential mechanism for dissimilatory nitrite reduction, J.Am.Chem.Soc., 110: 6851–6856.CrossRefGoogle Scholar
  104. Witanowski, M., and Webb, G.A., 1973, Nitrogen NMR. Plenum Press, London, New York.Google Scholar
  105. Yoshimura, T., Suzuki, S., Nakahara, A., Iwasaki, H., Masuko, M., and Matsubara, T., 1986, Spectral properties of nitric oxide complexes of cytochrome c’ from Alcaligenes sp. NCIB 11015, Biochemistry, 25: 2436–2442.CrossRefGoogle Scholar
  106. Yoshimura, T., Suzuki, S., Nakahara, A., Iwasaki, H., Matsubara, T., and Iwaizumi, M., 1987, Effect of sodium dodecyl sulfate on spectral properties of the nitric oxide complex of ferrous cytochrome c’ from Alcaligenes sp. NCIB 11015, Inorg. Chim.Acta., 136: L17 - L19.CrossRefGoogle Scholar
  107. Yoshimura, T. and Suzuki, S., 1988, The pH dependence of the stereochemistry around the heme group in NO-cytochrome c (horse heart), Inorg.Chim.Acta., 152: 241–249.CrossRefGoogle Scholar
  108. Zehnder, A.J.B. (ed.), 1988, Biology of anaerobic microorganisms. John Wiley Sons, New York, Chichester, Brisbane, Toronto, Sing tpore.Google Scholar
  109. Zumft, W.G., and Cardenas, J., 1979, The inorganic biochemistry of nitrogen. Bioenergetic processes, Naturwissenschaften, 66: 81–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Peter M. H. Kroneck
    • 1
  • Walter G. Zumft
    • 1
    • 2
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany
  2. 2.Lehrstuhl für MikrobiologieUniversität KarlsruheKarlsruheFederal Republic of Germany

Personalised recommendations