Dendritic Cells Induce Immunity to Cutaneous Leishmaniasis in Mice

  • Heidrun Moll
  • Stefanie Flohé
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)

Abstract

In humans, the protozoan parasite Leishmania major produces a range of cutaneous disease manifestations. The skin lesions vary from small papules to non-ulcerated plaques to large ulcers with defined, raised edges. Satellite lesions are common. L. major infections are caused by introduction of parasites into the skin during a blood meal of an infected sandfly; they heal spontaneously after a few months to more than a year and are associated with severe scarring. In mammalian hosts, the parasites are obligatory intracellular and reside within macrophages and dendritic cells, which not only serve as a habitat for the parasite, but also fulfil antigen-presenting and antimicrobial effector functions.1,2

Keywords

Dendritic Cell Major Histocompatibility Complex Class Cutaneous Leishmaniasis Mannose Receptor Leishmania Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.G. Titus, C.M. Theodos, A. Shankar, and L.R. Hall, Interactions between Leishmania major and macrophages, in: “Macrophage-Pathogen Interactions”, T. Zwilling and T. Eisenstein, eds., Marcel Dekker, New York (1993), pp. 437.Google Scholar
  2. 2.
    H. Moll, S. Flohé, and C. Blank. Langerhans cells in cutaneous leishmaniasis, in: “The Immune Functions of Epidermal Langerhans Cells”, H. Moll, ed., R.G. Lande, Austin (1995), pp. 159.CrossRefGoogle Scholar
  3. 3.
    S.L. Reiner and R.M. Locksley, The regulation of immunity to Leishmania major, Annu. Rev. Immunol. 13: 151 (1995).PubMedCrossRefGoogle Scholar
  4. 4.
    F.Y. Liew and C.A. O’Donnell, Immunology of leishmaniasis, Adv. Parasitol. 32: 161 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    J.G. Howard, C. Hale, and F.Y. Liew, Immunological regulation of experimental cutaneous leishmaniasis. IV. Prophylactic effect of sublethal irradiation as a result of abrogation of suppressor T cell generation in mice genetically susceptible to Leishmania tropica, J. Exp. Med. 153: 557 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    D.L. Sacks. P.A. Scott, R. Asofsky, and F.A. Sher, Cutaneous leishmaniasis in anti-IgM-treated mice: enhanced resistance due to functional depletion of a B cell-dependent T cell involved in the suppressor pathway, J. Immunol. 132: 2072 (1984).PubMedGoogle Scholar
  7. 7.
    R.G. Titus, R. Ceredig, J.-C. Cerottini, and J.A. Louis, Therapeutic effect of anti-L3T4 monoclonal antibody GKI.5 on cutaneous leishmaniasis in genetically susceptible BALB/c mice. J. Immunol. 135: 2108 (1985).PubMedGoogle Scholar
  8. 8.
    M.D. Sadick, F.P. Heinzel, B.J. Holaday, R.T. Pu, R.S. Dawkins, and R.M. Locksley, Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J. Exp. Med. 171: 115 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    F.P. Heinzel, D.S. Schoenhaut, R.M. Rerko, L.E. Rosser, and M.K. Gately, Recombinant IL-12 cures mice infected with Leishmania major, J. Exp. Med. 177:1505 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    J.P. Sypek, C.L. Chung, S.E.H. Mayor, J.M. Subramanyam, S.J. Goldman, D.S. Sieburth, S.F. Wolf, and R.G. Schaub, Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response, J. Exp. Med. 177:1797 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    M.J. McConville, A. Bacic, G.F. Mitchell. and E. Handman, Lipophosphoglycan of Leishmania major that vaccinates against cutaneous leishmaniasis contains an alkylglycerophosphoinositol lipid anchor, Proc. Natl. Acad. Sci. USA 84: 8941 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    D.M. Yang, N. Fairweather, L. Button, W.R. McMaster, L.P. Kahl, and F.Y. Liew, Oral Salmonella typhimurium (AroA) vaccine expressing a major leishmanial surface protein (gp63) preferentially induced Thl cells and protective immunity against leishmaniasis, J. Immunol. 145: 2281 (1990).PubMedGoogle Scholar
  13. 13.
    D. McMahon-Pratt, D. Rodriguez, J.-R. Rodriguez, Y. Zhang, K. Manson, C. Bergman, L. Rivas, J.F. Rodriguez, K. Lohman, N.H. Ruddle, and M. Esteban, Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection, Infect. Immun. 61: 3351 (1993).PubMedGoogle Scholar
  14. 14.
    F.Y. Liew, C. Hale, and J.G. Howard, Prophylactic immunization against experimental leishmaniasis. IV. Subcutaneous immunization prevents the induction of protective immunity against fatal Leishmania major infection, J. Immunol. 135: 2095 (1985).PubMedGoogle Scholar
  15. 15.
    C. Blank, H. Fuchs, K. Rappersberger, M. Röllinghoff, and H. Moll, Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major, J. Infect. Dis. 167: 418 (1993).PubMedCrossRefGoogle Scholar
  16. 16.
    F. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia, Dendritic cells use macropinocytosis and the man-nose receptor to concentrate macromolecules in the major histocompatibility complex class ll compartment: downregulation by cytokines and microbial products, J. Exp. Med. 182: 389 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    W. Jiang, W.J. Swiggard, C. Heufler, M. Peng, A. Mirza, R.M. Steinman, and M.C. Nussenzweig. The receptor DEC-205 expressed by dendritic cells and thymis epithelial cells is involved in antigen processing. Nature 375: 151 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Blank, C. Bogdan, C. Bauer, K. Erb, and H. Moll, Murine epidermal Langerhans cells do not express inducible nitric oxide synthase. Eue J. Immunol. 26: 792 (1996).CrossRefGoogle Scholar
  19. 19.
    H. Moll, H. Fuchs, C. Blank, and M. Röllinghoff, Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells, Eue J. Immunol. 23: 1595 (1993).CrossRefGoogle Scholar
  20. 20.
    T. Aebischer, Recurrent cutaneous leishmaniasis: a role for persistent parasites?, Parasitai. Today 10: 25 (1994).CrossRefGoogle Scholar
  21. 21.
    S. Stenger, N. Donhauser, H. Thüring, M. Röllinghoff, and C. Bogdan, Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase, J. Exp. Med. 183: 1501 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Moll, S. Flohé, and M. Röllinghoff, Dendritic cells in Leishmania major-immune mice harbor persistent parasites and mediate an antigen-specific T cell immune response, Eue J. Immunol 25: 693 (1995).CrossRefGoogle Scholar
  23. 23.
    V. Flamand, T. Sornasse, K. Thielemans, C. Demanet, M. Bakkus, F. Tielemans, O. Leo,,I. Urban. and M. Moser, Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo, Em: J. Immunol. 24: 605 (1994).CrossRefGoogle Scholar
  24. 24.
    S. Grabbe, S. Beissert, T. Schwarz, and R.D. Granstein, Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy?, Immunol. Today 16: 117 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Heidrun Moll
    • 1
  • Stefanie Flohé
    • 1
  1. 1.Research Center for Infectious DiseasesUniversity of WürzburgWürzburgGermany

Personalised recommendations