In Vitro Priming to Tumor-Associated Proteins

  • Susan L. Hand
  • Helga Bernhard
  • Eric S. Huseby
  • William D. Rubin
  • Mary L. Disis
  • Martin A. Cheever
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)


Cancer can be cured in mice by adoptive transfer of T cells specific for the malignant cells or by vaccination to tumor-specific antigens. The application of immunotherapy to the treatment of human cancer hinges on the identification of human tumor antigens to which specific immunity can be elicited.


Dendritic Cell Antigen Present Cell Keyhole Limpet Hemocyanin Dendritic Cell Population Dendritic Antigen Present Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Houghton, A.N. Cancer antigens: immune recognition of self and altered self. J Exp Med 180, 1 (1994).PubMedCrossRefGoogle Scholar
  2. 2.
    Pardoll, D.M. A new look for the 1990s. Nature 369, 357 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    Van der Bruggen, R, Traversari, C., Chomez, R, Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A. and Boon, T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643 (1991).Google Scholar
  4. 4.
    Brichard, V., Van Pel, A., Wolfe!, T., Wolfel, C., De Plaen, E., Lethe, B., Coulie, P. and Boon, T. The tyrosinase gene codes for an antigen recognized by autologous cytotoxic T lymphocytes on HLA-A2 melanomas. J Exp Med 178, 489 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    Coulie, P.G., Brichard, V., Van Pet, A., Wolfel, T., Schneider, J., Traversari, C., De Plaen, E., Lurquin, C., Szikora, J.-R., Renauld, J. and Boon, T. A new gene coding for a differentiation antigen recognized by autologous cytologic T lymphocytes on HLA-A2 melanomas. J Exp Med 180, 35 (1994).PubMedCrossRefGoogle Scholar
  6. 6.
    Kawakami, Y., Eliyanu, S., Delgado, C.H., Robbins, P.F., Rivoltini, L., Topalian, S.L., Miki, T. and Rosenberg, S.A. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl. Acad. Sci. USA 91, 3515 (1994).Google Scholar
  7. 7.
    Bakker, A.B.H., Schreurs, M.W.J., de Boer, A.J., Kawakami, Y., Rosenberg, S.A., Adema, G.J. and Figdor, C.G. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J. Exp. Med. 179, 1005 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    Disis, M.L., Calenoff, E., McLaughlin, G., Murphy, A.E., Chen, W., Groner, B., Jeschke, M., Lydon, N., McGlynn, E., Livingston, R.B., Moe, R. and Cheever, M.A. Existent T cell and antibody immunity to HER2/neu protein in patients with breast cancer. Cancer Res 54, 16 (1994).PubMedGoogle Scholar
  9. 9.
    Fisk, B., Blevins, T.L., Wharton, J.T. and loannides, C.G. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181, 2109 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    Peoples, G.E., Goedegebuure, P.S., Smith. R., Linehan, D.C., Yoshino, I. and Eberlein, T.J. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci, USA 92, 432 (1995).CrossRefGoogle Scholar
  11. 11.
    Le-Gros, G., Ben-Sasson, S.Z., Seder, R., Finkelman, F.D. and Paul, W.E. Generation of interleukin 4 (IL-4)producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med 172, 921 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    Swain, S.L., Weinberg, A.D., English, M. and Huston, G. IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145. 3796 (1990).PubMedGoogle Scholar
  13. 13.
    Manetti, R., Parronchi, P., Giudizi, M.G., Piccinni, M.P., Maggi, E., Trinchieri, G. and Romagnani, S. Natural killer cell stimulatory factor (interleukin 12 [IL-121) induces T helper type I (Th 1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 177, 1199 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    Macatonia, S.E., Hosken, N.A., Litton, M., Vieira, P., Hsieh, C.S., Culpepper, J.A., Wysocka, M., Trinchieri, G., Murphy, K.M. and O’Garra, A. Dendritic cells produce IL-12 and direct the development of Th I cells from naive CD4+ T cells. J Immunol 154, 5071 (1995).PubMedGoogle Scholar
  15. 15.
    Van-Voorhis, W.C.V., Valinsky, J., Hoffman, E., Luban, J., Hair, L.S. and Steinman, R.M. Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell proliferation. J Exp Med 158, 174 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    Steinman, R.M. The dendritic cell system and its role in immunogenicity. Ann Rev Immunol 9, 271 (1991).CrossRefGoogle Scholar
  17. 17.
    Caux, C., Dezutter-Dambuyant, C., Schmitt, D. and Banchereau, J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360, 258 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    Bernhard, H., Disis, M.L., Heimfeld, S., Hand, S., Gralow, J.R. and Cheever, M.A. Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow and peripheral blood. Cancer Res 55, 1099 (1995).PubMedGoogle Scholar
  19. 19.
    Szabolcs, P., Moore, M.A.S. and Young, J.W. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precuraors cultured with c-kit ligand, GMCSF, and TNFa. J Immunol 154, 5851 (1995).PubMedGoogle Scholar
  20. 20.
    Romani, N., Koide, S., Crowley, M., Witmer-Pack, M., Livingstone, A.M., Fathman, C.G., Inaba, K. and Steinman, R.M. Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells. J Exp Med 169, 1 169 (1989).Google Scholar
  21. 21.
    Streilein, J.W. and Grammer, S.F. In vitro evidence that Langerhans cells can adopt two functionally distinct forms capable of antigen presentation to T lymphocytes. J Immunol 143, 3925 (1989).Google Scholar
  22. 22.
    O’Doherty, U., Steinman, R.M., Peng, M., Cameron, P.U., Gezelter, S., Kopeloff, I., Swiggard, W.J., Pope, M. and Bhardwaj, N. Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. J Exp Med 178, 1067 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    Sallusto, F. and Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J Exp Med 179, 1109 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Van Kooten, C., Durand, I. and Banchereau, J. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180, 1263 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    Kitajima, T., Caceres-Dittmar, G., Tapia, F.J., Jester, J., Bergstresser, P.R. and Takashima, A. T cell-mediated terminal maturation of dendritic cells. J Immunol 157, 2340 (1996).PubMedGoogle Scholar
  26. 26.
    Santiago-Schwarz, F., Tucci, J. and Carsons, S.E. Endogenously produced interleukin 6 is an accessory cytokine for dendritic cell hematopoiesis. Stem Cells 14, 225 (1996).PubMedCrossRefGoogle Scholar
  27. 27.
    Coussens, L., Yang-Feng, T.L., Chen, Y.L.E., Gray, A., McGrath, J., Seeburg, P.H., Liberman, T.A., Schlessinger, J., Francke, U., Levinson, A. and Ullrich, A. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132 (1985).Google Scholar
  28. 28.
    Harwerth, I.M., Wels, W., Marte, B. and Hynes, N. Monoclonal antibodies against the extracellular domain of the erbB-2 receptor as partial ligand agonists. J Biol Chem 269, 15160 (1992).Google Scholar
  29. 29.
    Lupu, R., Dickson, R. and Lippman, M. The role of erbB-2 and its ligands in growth control of malignant breast epithelium. J Steroid Biochem Mol Biol 43, 229 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    Press, M., Cordon-Cardo, C. and Slamon, D. Expression of HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 5, 953 (1990).PubMedGoogle Scholar
  31. 31.
    Kallioniemi, O., Kallioniemi, A., Kurisu, W., Thor, A., Chen, L.-C., Smith, H., Waldman, F., Pinkel, D. and Gray, J. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Nati Acad Sci USA 89, 5321 (1992).CrossRefGoogle Scholar
  32. 32.
    Berchuck, A., Kamel, A., Whitaker, R., Kerns, B., Olt, G., Kinney, R., Soper, J., Dodge, R., Clarke-Pearson, D. and Marks, P. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 50, 4087 (1990).PubMedGoogle Scholar
  33. 33.
    Berchuck, A., Rodriguez, G., Kinney, R.B., Soper, J.T., Dodge, R.K., Clarke-Pearson, D.L. and Bast, R.C. Overexpression of HER-2/neu in endometrial cancer is associated with advanced stage disease. Am J Ob-stet Gynecol 15 (1991).Google Scholar
  34. 34.
    Kern, J.A., Schwartz, D.A., Nordberg, J.E., Weiner, D.B., Greene, M.I., Torney, L. and Robinson, R.A. p185“`° expression in human lung adenocarcinomas predicts shortened survival. Cancer Res 50, 5184 (1990).PubMedGoogle Scholar
  35. 35.
    Slamon, D., Godolphin, W., Jones, L., Holt, J., Wong, S., Keith, D., Levine, W., Stuart, S., Udove, J., Ullrich, A. and Press, M. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    Yonemura, Y., Ninomiya, l., Yamaguchi, A., Fushida, S., Kimura, H., Ohoyama, S., Miyazakil, I., Endou, Y., Tanaka, M. and Susaki, T. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognisis in gastric cancer. Cancer Res 51, 1034 (1991).PubMedGoogle Scholar
  37. 37.
    Allred, D., Clark, G., Molina, R., Tandon, A., Schnitt, S., Gilchrist, K., Osborne, C., Tormey, D. and McGuire, W. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 23, 974 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    Slamon, D., Clark, G., Wong, S., Levin, W., Ullrich, A. and McGuire, W. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    Cheever, M.A., Disis, M.L., Bernhard, H., Gralow, J.R., Hand, S.L., Huseby, E.S., Qin, H.L., Takahashi, M. and Chen, W. in Immunol Rev (eds. Moller, G.) (Munksgaard Intl Pub, Copenhagen, 1995 ).Google Scholar
  40. 40.
    Alper, O., Yamaguchi, K., Hitomi, J., Honda, S., Matsushima, T. and Abe, K. The presence ofc-erbB-2 gene product-related protein in culture medium conditioned by breast cancer cell line SKBR3. Cell Growth and Differentiation 1, 591 (1990).PubMedGoogle Scholar
  41. 41.
    Zabrecky, J., Lam, T., McKenzie, S. and Carney, W. The extracellular domain of pI85/neu is released from the surface of human breast carcinoma cells, SKBR3. J Biol Chem 266, 1716 (1991).PubMedGoogle Scholar
  42. 42.
    Mori, S., Mori, Y., Mukaiyama, T., Yamada, Y., Sonobe, Y., Matsushita, H., Sakamoto, G., Akiyama, T., Ogawa, M., Shiraishi, M., Toyoshima, K. and Yamamoto, T. In vitro and in vivo release of soluble erb13–2 protein from human carcinoma cells. Jpn J Cancer Res 81, 489 (1990).Google Scholar
  43. 43.
    Leitzel, K., Teramoto, Y., Sampson, E., Mauceri, J., Langton, B., Demers, L., Podczaski, E., Harvey, H., Shambaugh, S., Volas, G., Weaver, S. and Lipton, A. Elevated soluble c-erb-2 antigen levels in the serum and effusions of a proportion of breast cancer patients. J Clin Oncol 10, 1436 (1992).PubMedGoogle Scholar
  44. 44.
    loannides, C.G., Fisk. B., Fan, D., Biddison, W.E.. Wharton, J.T. and O’Brian, C.A. Cytotoxic T cells isolated from ovarian malignant ascites recognize a peptide derived from the HER-2/neu proto-oncogene. Cell Immunol 151, 225 (1993).CrossRefGoogle Scholar
  45. 45.
    Disis, M.L., Smith, J.W., Murphy, A.E., Chen, W. and Cheever, M.A. In vitro generation of human cytotoxic T cells specific for peptides derived from the HER-2/neu proto-oncogene protein. Cancer Res 54, 1071 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Susan L. Hand
    • 1
  • Helga Bernhard
    • 1
    • 2
  • Eric S. Huseby
    • 1
  • William D. Rubin
    • 1
  • Mary L. Disis
    • 1
  • Martin A. Cheever
    • 1
  1. 1.University of Washington SeattleWashingtonUSA
  2. 2.University of MainzMainzGermany

Personalised recommendations