Skip to main content

The HIV-1 Life Cycle is Blocked at Two Different Points in Mature Dendritic Cells

  • Chapter
Dendritic Cells in Fundamental and Clinical Immunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 417))

Abstract

The proliferative status of the host cells influences the life cycle of retroviruses1,2. For oncogenic retroviruses cell division is considered a prerequisite for integration and viral replication. Lentiviruses differ from oncogenic retroviruses because they can complete their replicative cycle indipendently from cell division. The HIV-1 lentivirus uses a gag targeting cell to access the nucleus and integrate into macrophages. HIV-1 productively infects monocytes and terminally differentiated macrophages in specific organs like brain and cultured blood monocytes3,4. The predominant target for HIV-1 in the blood is a CD4+ T lymphocyte, but activation of T cells is required for productive infection. Nonetheless, HIV-1 is capable of infecting and persisting in resting T cells without producing virions5. Once infected the resting T cell can synthesize an incomplete form of viral DNA5 without complete reverse transcription. Following stimulation of the infected quiescent cells, productive infection occurs.5,6 Dendritic cells represent a distinct lineage of white cells that derive from CD34+ progenitors in the bone marrow. They are motile and widely distributed in most of the tissues and in all components of lymphoid system [for review see7]. Dendritic cells are specialized antigen-presenting cells for T cells in situ, both for self-antigens during T cell development and foreign antigens during immunity. Although relatively few in number, dendritic cells are effective antigen presenting cells because they express not only high levels of MHC class I and II but also several of the accessory molecules that are required for T cell binding and activation8,9. In many tissues dendritic cells express CD4 as in skin10, tonsil11, thymus12, and several mucosae13. Recently, methods to generate large quantities of mature dendritic cells from blood precursors have been described14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Varmus, H. Science 240, 1427–1434 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. Brown, P. O., Bowerman, B., Varmus, H. E. & Bishop, J. M. Cell 49, 347–356 (1987).

    Article  PubMed  CAS  Google Scholar 

  3. Gartner, S., Markovits, P., Markovits, D. M., Kaplan, M. H., Gallo, R. C. & Popovic, M. Science 223, 215–219 (1986).

    Article  Google Scholar 

  4. Meltzer, M. S., Skihnan, D. R., Gomatos, P. J., Kalter, D. C. & Gendelman, H. E. Annu. Rev. Immunol. 8, 169 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A. & Chen, I. S. Y. Cell 61, 213–222 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. Stevenson, M., Stanwick, T. L., Dempsey, M. P. & Lamonica, C. A. EMBO 9, 1551–1560 (1990).

    CAS  Google Scholar 

  7. Steinman. R. M., Schuler, G., Romani, N. & Kaplan, G. in Atlas of Blood Cells: Function and Pathology (eds Zucker-Franklin, D., Greaves, M.F., Grossi, C.E. & Marmont, A.M.) Vol.2nd, 359–377 ( Lea & Febiger, Philadelphia, PA, 1988 ).

    Google Scholar 

  8. Young, J. W., Koulova, L., Soergel, S. A., Clark, E. A., Steinman, R. M. & Dupont, B. J. (lin. Invest. 90, 229–237 (1992).

    Article  CAS  Google Scholar 

  9. O’Doherty, U., Steinman, R. M., Peng, M.. et al. I. Exp. Med. 178, 1067–1078 (1993).

    Article  Google Scholar 

  10. Nestle, F. O., Zheng, X.-G., Thompson, C. B., Turka, L. A. & Nickoloff, B. J. J. Immunol. 151, 6535–6545 (1993).

    CAS  Google Scholar 

  11. Hart, D. N. & McKenzie, J. L. J. Exp. Med. 168, 157–170 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. Sotzik, F., Rosenberg, Y., Boyd, A. W., et al. J. Immunol. 152, 3370–3377 (1994).

    PubMed  CAS  Google Scholar 

  13. Pavli, P., flume, D. A., Van de Pol, E. & Doe, W. F. Immunol. 78, 132–141 (1993).

    CAS  Google Scholar 

  14. Bender, A., Sapp, M., Schuler, G.. Steinman, R. M. & Bhardwaj, N. J. Immunol Methods 196, 121–135 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. Langhoff. E., Terwilliger, E. E., Bos, H. J., et al. Proc. Natl. Acad. Sci. USA 88, 7998–8002 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. Macatonia, S. E., Patterson, S. & Knight, S. C. Immunol. 67, 285–289 (1989).

    CAS  Google Scholar 

  17. Cameron, P. U., Lowe, M. G., Crowe, S. M., et al. J. Leuk. Biol. 56, 257–265 (1994).

    CAS  Google Scholar 

  18. Cameron, P. U., Forsum, U., Teppler, H.. Granelli-Piperno, A. & Steinman, R. M. Clin. Exp. Immunol. 88, 226–236 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. Cameron. P. U., Freudenthal, P. S., Barker, J. M., Gezelter, S., Inaba, K. & Steinman, R. M. Science 257, 383–387 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Pope, M., Betjes, M. G. H., Romani, N., et al. Cell 78, 389–398 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. Granelli-Piperno, A., Pope, M., Inaba, K. & Steinman, R. M. Proc. Natl. Acad. Sci. USA 92, 10944–10948 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. Alkhatib, G., Combadier, C., Broder, C. C., et al. Science 272, 1955–1958 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. Dragic, T., Litwin, V., Allaway, G. R, et al. Nature 381, 667–673 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. Science 272, 872–877 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. Oberlin, E.. Amara, A., Bachelerie, F., et al. Nature 382, 833–835 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. Granelli-Piperno, A., Moser. B., Pope, M., et al. Submitted (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Granelli-Piperno, A., Chen, D., Moser, B., Steinman, R.M. (1997). The HIV-1 Life Cycle is Blocked at Two Different Points in Mature Dendritic Cells. In: Ricciardi-Castagnoli, P. (eds) Dendritic Cells in Fundamental and Clinical Immunology. Advances in Experimental Medicine and Biology, vol 417. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9966-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9966-8_68

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9968-2

  • Online ISBN: 978-1-4757-9966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics