Skip to main content

Blocking of the B7-CD28 Pathway Increases the Capacity of FasL+ (CD95L+) Dendritic Cells to Kill Alloactivated T Cells

  • Chapter
Dendritic Cells in Fundamental and Clinical Immunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 417))

Abstract

Dendritic cells (DC) are antigen presenting cells of hemopoietic origin, uniquely well-equipped to activate naive T cells.1 Evidence also exists however, for DC tolerogenicity.2 During primary activation, mature T cells change from an activation-induced cell death (AICD) -resistant to an AICD-sensitive phenotype.3 The complete molecular basis for this transition remains to be determined, but CD95 (Fas/Apo-1) and CD95L (Fas ligand; FasL) appear to play an important role in the homeostatic regulation of T cell responses.4 It seems that CD95L can mediate opposite effects (T cell activation or apoptosis) depending on the state of activation of the responding T cells. Previously, we have shown that mouse bone marrow (BM)-derived DC progenitors deficient in expression of cell surface costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are capable of inducing alloantigen-specific T cell hyporesponsiveness5 and prolonging allograft survival.6 Others have shown recently that a major subpopulation of freshly-isolated mouse lymphoid tissue DC is FasL+, and can induce apoptosis in allogeneic T cells.7 In the course of studies on DC propagated in vitro from mouse BM, we observed that these cells expressed Fas L. Our aim was to determine whether these cells could induce T cell apoptosis and whether costimulatory molecule expression could affect this activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinman, R.M. 1991. The dendritic cell system and its role in immunogenicity. Anno Rev Immunol 9: 271–296.

    Article  CAS  Google Scholar 

  2. Thomson, A.W., L. Lu, N. Murase, A.J. Demetris, A.S. Rao, and T.E. Starzl. 1995 Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells 13: 622–639.

    Article  PubMed  CAS  Google Scholar 

  3. Green, D.R., and D.W. Scott. 1994. Activation-induced apoptosis in lymphocytes. Curt: Opin. lmmunol. 6: 476–487.

    Article  CAS  Google Scholar 

  4. Lynch, D.H., F. Ramsdell, and M.R. Alderson. 1995. Fas and FasL in the homeostatic regulation of immune responses. Immunol. Today 16: 569–574.

    Article  PubMed  CAS  Google Scholar 

  5. Lu, L., D. McCaslin, T.E. Starzl, and A.W. Thomson. 1995. Mouse bone marrow-derived dendritic cell progenitors (NLDC 145`, MHC class II’, B7-I“”, B7–2-) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation 60: 1539–1545.

    Article  PubMed  CAS  Google Scholar 

  6. Fu, F., Y. Li, S. Qian, L. Lu, F. Chambers, T.E. Starzl. J.J. Fung, and A.W. Thomson. 1996. Costimulatory molecule-deficient dendritic cell progenitors (MHC class ll’. B7-`’’, B7–2-) prolong cardiac allograft survival in non-immunosuppressed recipients. Transplantation 62: 659–665.

    Article  PubMed  CAS  Google Scholar 

  7. Süss, G., and K. Shortman. 1996. A subclass of dendritic cells kills CD4 T cells via Fas/Fas ligand-induced apoptosis. J. Exp. Med. 183: 1789–1796.

    Article  PubMed  Google Scholar 

  8. Lu, L., W.A. Rudert, S. Qian, D. McCaslin, F. Fu, A.S. Rao, M. Trucco, J.J. Fung, T.E. Starzl, and A.W. Thomson. 1995. Growth of donor-derived dendritic cells from the bone marrow of liver allograft recipients in response to granulocyte/macrophage colony-stimulating factor. J.Exp.Med. 182: 379–387.

    Article  PubMed  CAS  Google Scholar 

  9. Lu, L., C.A. Bonham, F.G. Chambers, S.C. Watkins, R.A. Hoffman, R.L. Simmons, and A.W. Thomson. 1996. Induction of nitric oxide synthase in mouse dendritic cells by interferon y, endotoxin and interaction with allogeneic T cells: nitric oxide production is associated with dendritic cell apoptosis. J. Immunol. In press.

    Google Scholar 

  10. Lu, L., J. Woo, A.S. Rao, Y. Li, S.C. Watkins, S. Qian, T.E. Starzl, A.J. Demetris, and A.W. Thomson. 1994. Propagation of dendritic cell progenitors from normal mouse liver using GM-CSF and their maturational development in the presence of type-1 collagen. J Exp. Med. 179: 1823–1834.

    Article  PubMed  CAS  Google Scholar 

  11. McCarthy, S.A., R.N. Cachione, M.S. Mainwaring, and J.S. Cairns. 1992. The effects of immunosuppressive drugs on the regulation of activation-induced apoptotic cell death in thymocytes. Transplantation 54: 543–547.

    Article  PubMed  CAS  Google Scholar 

  12. Gavrieli, Y., Y. Sherman, and S.A. Ben-Sasson. 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119: 493–501.

    Article  PubMed  CAS  Google Scholar 

  13. Vremec, D., M. Zorbas, R. Scollay, D.J. Saunders, C.F. Ardavin, L. Wu, and K. Shortman. 1992. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176: 47–58.

    Article  PubMed  CAS  Google Scholar 

  14. Wu, M.X., Z. Ao, M. Hegen, C. Morimoto, and S.F. Schlossman. 1996. Requirement of Fas (CD95), CD45, and CD 11 a/CD 18 in monocyte-dependent apoptosis of human T cells. J. Monona 157: 707–713.

    CAS  Google Scholar 

  15. Munn, D.H., J. Pressey, A.C. Beall, R. Hudes, and M.R. Alderson. 1996. Selective activationinduced apoptosis of peripheral T cells imposed by macrophages. J. Immunol. 156: 523–532.

    PubMed  CAS  Google Scholar 

  16. Hauschildt, S., Bessler, W.G., and P. Scheipers. 1993. Engagement of major histocompatibility complex class II molecules leads to nitrite production in bone marrow-derived macrophages. Eur.l. lmmunol. 23: 2988–2992.

    Article  CAS  Google Scholar 

  17. Tian, L., R.J. Noelle, and D.A. Lawrence. 1995. Activated T cells enhance nitric oxide production by murine splenic macrophages through gp39 and LFA-I. Eur. J. Immunol. 25: 306–309.

    CAS  Google Scholar 

  18. Ju, S.-T., D.J. Panka, H. Cui, R. Ettinger, M. El-Khatib, D.H. Sherr, B. Z. Stanger, and A. Marshak-Rothstein. 1995. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373: 444–448.

    Article  PubMed  CAS  Google Scholar 

  19. Nagata, S. 1994. Fas and Fas ligand: a death factor and its receptor. Adv. Immunol. 57: 129144.

    Google Scholar 

  20. Alderson, M.R., T.W. Tough, T. Davis-Smith, S. Braddy, B. Falk, K.A. Schooley, R.G. Goodwin, C.A. Smith, F. Ramsdell, and D.H. Lynch. 1995. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med. 181: 71–77.

    Google Scholar 

  21. Griffith, T.S., T. Brunner, S.M. Fletcher, D.R. Green, and T.A. Ferguson. 1995. Fas ligand induced apoptosis as a mechanism of immune privilege. Science 270: 1189–1192.

    Article  PubMed  CAS  Google Scholar 

  22. Boise, L.H., A.J. Minn, P.J. Noel, C.H. June, M.A. Accavitti, T. Lindsten, and C.B. Thompson. 1995. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl XL. Immunity 3: 87–98.

    Article  PubMed  CAS  Google Scholar 

  23. Zheng, L., G. Fisher, R.E. Miller, J. Peschon, D.H. Lynch, and M.J. Lenardo. 1995. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377: 348–351.

    Article  PubMed  CAS  Google Scholar 

  24. Lau, H.T., M Yu, A. Fontana, and C.J. Stoeckert, Jr. 1996. Prevention of islet allograft rejection with engineered myoblaste expressing FasL in mice. Science 273: 109–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, L., Qian, S., Starzl, T.E., Lynch, D.H., Thomson, A.W. (1997). Blocking of the B7-CD28 Pathway Increases the Capacity of FasL+ (CD95L+) Dendritic Cells to Kill Alloactivated T Cells. In: Ricciardi-Castagnoli, P. (eds) Dendritic Cells in Fundamental and Clinical Immunology. Advances in Experimental Medicine and Biology, vol 417. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9966-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9966-8_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9968-2

  • Online ISBN: 978-1-4757-9966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics