Constructing Artificial Antigen-Presenting Cells from Drosophila Cells

  • Jonathan Sprent
  • Zeling Cai
  • Anders Brunmark
  • Michael R. Jackson
  • Per A. Peterson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)


Stimulation of unprimed T cells is controlled by professional antigen-presenting cells (APC) such as dendritic cells (DC).1–3 The strong APC function of DC is presumed to reflect that these cells express a high density of major histocompatibility complex (MHC) molecules and a variety of costimulatory molecules. In this respect, activation of naive T cells by APC is thought to require two distinct signals: Signal t reflects T cell receptor (TCR) contact with specific peptides bound to MHC molecules, and Signal 2 is the consequence of other molecules on T cells, e.g. CD28, interacting with costimulatory molecules, e.g. B7 (B7-1, B7-2), on APC. Since many different accessory molecules on APC can express costimulatory function for T cells under defined conditions, which particular accessory molecules are essential for stimulating naive T cells is unclear. We have addressed this issue by constructing artificial APC from a Drosophila cell line by gene transfection.


Major Histocompatibility Complex Major Histocompatibility Complex Class Proliferative Response Costimulatory Molecule Drosophila Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Janeway, C.A., and K. Bottomly. 1994. Signals and signs for lymphocyte responses. Cell 76: 275–285.PubMedCrossRefGoogle Scholar
  2. 2.
    Schwartz, R.H. 1992. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BBI in interleukin-2 production and immunotherapy. Cell 71:1065–1068.Google Scholar
  3. 3.
    Steinman, R.M. 1991. The dendritic cell system and its role in immunogenicity. Annu. Rev: Immunol. 9: 271 296.Google Scholar
  4. 4.
    Jackson, M.R., E.S. Song, Y. Yang, and P.A. Peterson. 1992. Empty and peptide-containing conformers of class I major histocompatibility complex molecules expressed in Drosophila melanogaster cells. Proc.Natl.Acad.Sci.USA 89: 12117–12121.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang, Y., K. Fruh, J. Chambers, J.B. Waters, L. Wu, T. Spies, and P.A. Peterson. 1992. Major histocompatibility complex (MHC)-encoded HAM2 is necessary for antigenic peptide loading onto class I MHC molecules. J. Biol. Chem. 267: 11669–11672.PubMedGoogle Scholar
  6. 6.
    Sha, W.C., C.A. Nelson, R.D. Newberry, D.M. Kranz, J.H. Russell, and D.Y. Loh. 1988. Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature 335: 271–274.PubMedCrossRefGoogle Scholar
  7. 7.
    Kranz, D.M., S. Tonegawa, and H.N. Eisen. 1984. Attachment of an anti-receptor antibody to non-target cells renders them susceptible to lysis by a clone of cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 81: 7922–7926.PubMedCrossRefGoogle Scholar
  8. 8.
    Sykulev, Y., A. Brunmark, M. Jackson, R.J. Cohen, P.A. Peterson, and H.N. Eisen. 1994. Kinetics and affinity of reactions between an antigen-specific T cell receptor and peptide-MHC complexes. Immunity 1: 15–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Udaka, K., T.J. Tsomides, and H.N. Eisen. 1992. A naturally occurring peptide recognized by alloreactive CD8’ cytotoxic T lymphocytes in association with a class I MHC protein. Cell 69: 989–998.PubMedCrossRefGoogle Scholar
  10. 10.
    Udaka, K., T.J. Tsomides, P. Walden, N. Fukusen, and H.N. Eisen. 1993. A ubiquitous protein is the source of naturally occurring peptides that are recognized by a CD8’ T-cell clone. Proc. Natl. Acad. Sci. USA 90: 11272–11276.PubMedCrossRefGoogle Scholar
  11. 11.
    Corr, M., A.E. Slanetz, L.F. Boyd, M.T. Jelonek, S. Khilko, B.K. Al-Ramadi, Y. Sang Kim, S.E. Maher, A.L.M. Bothwell, and D.H. Margulies. 1994. T cell receptor-MHC class 1 peptide interactions: affinity, kinetics, and specificity. Science 265: 946–949.PubMedCrossRefGoogle Scholar
  12. 12.
    Cai, Z., A. Brunmark, M.R. Jackson, D. Loh, P.A. Peterson, and J. Sprent. 1996. Transfected Drosophila cells as a probe for defining the minimal requirements for stimulating unprimed CD8’ T cells. Proc. Natl. Acad. Sci. USA In Press.Google Scholar
  13. 13.
    Sprent, J., and M. Schaefer. 1990. Antigen-presenting cells for CD8` T cells. Immunol. Rev 117:213–234. Google Scholar
  14. 14.
    Cai, Z., and J. Sprent. 1994. Resting and activated T cells display different requirements for CD8 molecules. J. Exp. Med. 179: 2005–2015.PubMedCrossRefGoogle Scholar
  15. 15.
    Springer, T.A., M.L. Dustin, T.K. Kishimoto, and S.D. Marlin. 1987. The lymphocyte function associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu. Rev. Immunol. 5: 223–252.PubMedCrossRefGoogle Scholar
  16. 16.
    van Seventer, G.A., Y. Shimizu, K.J. Horgan, and S. Shaw. 1990. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J. Immunol. 144: 4579–4586.PubMedGoogle Scholar
  17. 17.
    Sun, S., Z. Cai, R. Langlade-Demoyen, H. Kosaka, A. Brunmark, M.R. Jackson, P.A. Peterson, and J. Sprent. 1996. Dual function of Drosophila cells as APC for naive CD8’ T cells: implications for tumor immunotherapy. Immunity 4: 555–564.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jonathan Sprent
    • 1
  • Zeling Cai
    • 2
  • Anders Brunmark
    • 2
  • Michael R. Jackson
    • 2
  • Per A. Peterson
    • 2
  1. 1.Department of Immunology, IMM4The Scripps Research InstituteLa JollaUSA
  2. 2.R.W. Johnson Pharmaceutical Research InstituteSan DiegoUSA

Personalised recommendations