The Regulation of T Cell Responses by a Subpopulation of CD8+DEC205+ Murine Dendritic Cells

  • Vadim Kronin
  • Gabriele Süss
  • Ken Winkel
  • Ken Shortman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)


Dendritic cells (DC) are migratory bone-marrow-derived cells of sparse but broad tissue distribution1,2. They are not homogeneous and even within a particular lymphoid organ distinct subpopulations can be separated3–5. If procedures are used which extract all DC, both CD8α+ and CD8α DC can be isolated from mouse spleen5. Under these conditions the DC isolated from thymus are predominantly CD8+, whereas those isolated from lymph nodes (LN) are predominantly CD8. This heterogeneity may be of functional importance, since there is evidence that the CD8+ DC of the thymus are of different developmental origin from the classical CD8 DC typically found in LW6,7. Since conventional isolation procedures yielded mainly the CD8 DC population the functional capacity of CD8+ DC had not previously been explored. To determine whether CD8+ and CD8 splenic DC differed in function, we tested their capacity to stimulate purified allogeneic CD4 and CD8 T cells in a primary mixed leucocyte reaction.


Dendritic Cell Proliferative Response Mouse Spleen Dendritic Cell Population Murine Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Steinman, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol. 9: 271 (1991)CrossRefGoogle Scholar
  2. 2.
    S. C. Knight and A. J. Stagg, Antigen-presenting cell types, Curr. Opin. Immunol. 5: 374 (1993)PubMedCrossRefGoogle Scholar
  3. 3.
    M. Crowley. K. Inaba, M. Witmer-Pack and R. M. Steinman, The cell surface of mouse dendritic cells: FACS analysis of dendritic cells from different tissues including thymus., Cell. Immunol. 118: 108 (1989)Google Scholar
  4. 4.
    M. T. Crowley, K. Inaba, M. D. Witmer-Pack, S. Gezelter and R. M. Steinman, Use of the fluorescence activated cell sorter to enrich dendritic cells from mouse spleen., J. Immunol. Methods. 133: 55 (1990)PubMedCrossRefGoogle Scholar
  5. 5.
    D. Vremec, M. Zorbas, R. Scollay, D. J. Saunders, C. F. Ardavin, L. Wu and K. Shortman, The surface phenotype of dendritic cells purified from mouse thymus and spleen: Investigation of the CD8 expression by a subpopulation of dendritic cells., J. Exp. Med. 176: 47 (1992)PubMedCrossRefGoogle Scholar
  6. 6.
    C. Ardavin, L. Wu, C. Li and K. Shortman, Thymic dendritic cells and T cells develop simultaneously within the thymus from a common precursor population., Nature. 362: 761 (1993)PubMedCrossRefGoogle Scholar
  7. 7.
    L. Wu, D. Vremec, C. Ardavin, K. Winkel, G. Suss, H. Georgiou, E. Maraskovsky, W. Cook and K. Short-man, Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation, Fur. J. Immunol. 25: 418 (1995)Google Scholar
  8. 8.
    G. Süss and K. Shortman, A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis, J. Exp. Med. 183: 1789 (1996)PubMedCrossRefGoogle Scholar
  9. 9.
    P. H. Krammer, I. Behrmann, P. Daniel, J. Dhein and K.-M. Debatin, Regulation of apoptosis in the immune system, Curr. Opin. Immunol. 6: 279 (1994)PubMedCrossRefGoogle Scholar
  10. 10.
    G. G. Singer and A. K. Abbas, The Fas Antigen is Involved in Peripheral but not Thymic Deletion of T Lymphocytes in T Cell Receptor Transgenic Mice, Immunity. 1: 365 (1994)PubMedCrossRefGoogle Scholar
  11. 11.
    R. Watanabe-Fukunaga, C.I. Brannan, N.G. Copeland, N.A. Jenkins, S. Nagata, L.ymphoprolifcration disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature. 356: 314 (1992)PubMedCrossRefGoogle Scholar
  12. 12.
    J. H. Russell, B. Rush, C. Weaver and R. Wang, Mature T cells of autoimmune Ipr/1pr mice have a defect in antigen-stimulated suicide, Proc. Natl. Acad. Sei. USA. 90: 4409 (1993)CrossRefGoogle Scholar
  13. 13.
    T. Suda, T. Takahashi, P. Golstein and S. Nagata, Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family, Cell. 75: 1169 (1993)PubMedCrossRefGoogle Scholar
  14. 14.
    D. H. Lynch, M. L. Watson, M. R. Alderson, P. R. /. Baum, R. E. Miller, T. Tough, M. Gibson, T. Davis-Smith, C. A. Smith, K. Hunter, D. Bhat, W. Din, R. G. Goodwin and M. F. Seldin, The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster., Immunity. 1: 131 (1994)PubMedCrossRefGoogle Scholar
  15. 15.
    S.-T. Ju, D. J. Panka, H. Cul, R. Ettinger, M. El-Khatib, D. h. Sherr, B. Z. Stanger and A. Marshak-Rothstein, Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation, Nature. 373: 444 (1995)PubMedCrossRefGoogle Scholar
  16. 16.
    J. Dhein, H. Walczak, C. Bäumler, K.-M. Debatin and P. H. Krammer, Autocrine T-cell suicide mediated by APO-1/(Fas/CD95), Nature. 373: 438 (1995)PubMedCrossRefGoogle Scholar
  17. 17.
    T. Brunner, R. J. Mogil, D. LaFace, N. J. Yoo, A. Mahboubi, F. Echeverri, S. J. Martin, W. R. Force, D. H. Lynch, C. F. Ware and D. R. Green, Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas, Nature. 373: 441 (1995)PubMedCrossRefGoogle Scholar
  18. 18.
    T. Takahashi, M. Tanaka, C. I. Brannan, N. A. Jenkins, N. G. Copeland, T. Suda and S. Nagata, Generalized Lymphoproliferative Disease in Mice, caused by a Point Mutation in the Fas Ligand, Cell. 76: 969 (1994)PubMedCrossRefGoogle Scholar
  19. 19.
    I. Gillette-Ferguson and C. L. Sidman, A specific intercellular pathway of apoptotic cell death is defective in the mature peripheral T cells of autoimmune 1pr and gld mice, Eur. J. Immun. 24: 1181 (1994)CrossRefGoogle Scholar
  20. 20.
    V. Kronin, K. Winkel, G. Suss, A. Kelso, W. Heath, J. Kirberg, H. von Boehmer and K. Shortman, A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production, J. Immunol. 157: 3819 (1996)PubMedGoogle Scholar
  21. 21.
    D. R. Kaplan, J. E. Hambor and M. L. Tykocinski, An immunoregulatory function for the CD8 molecule, Proc. Natl. Acad. Sci. USA. 86: 8512 (1989)PubMedCrossRefGoogle Scholar
  22. 22.
    J. E. Hambor, D. R. Kaplan and M. L. Tykocinski, CD8 functions as an inhibitory ligand in mediating the immunoregulatory activity of CD8’ cells, J. Immunol. 145: 1646 (1990)PubMedGoogle Scholar
  23. 23.
    S. R. Sambhara and R. G. Miller, Programmed cell death of T cells signaled by the T cell receptor and the alpha3 domain of class I MHC., Science. 252: 1424 (1991)PubMedCrossRefGoogle Scholar
  24. 24.
    W. Fung-Leung, M. W. Schilham, A. Rahemtulla, T. M. Kundig, M. Vollenweider, J. Potter, W. Van Ewijk and T. W. Mak, CD8 is needed for development of cytotoxic T cells but not helper T cells., Cell. 65: 443 (1991)PubMedCrossRefGoogle Scholar
  25. 25.
    W. Jiang, W. J. Swiggard, C. Heufler, M. Peng, A. Mirza, R. M. Steinman and M. C. Nussenzweig, The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing., Nature. 375: 151 (1995)PubMedCrossRefGoogle Scholar
  26. 26.
    G. Kraal, M. Breel, M. Janse and G. Bruin, Langerhans’ cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody, J. Exp. Med. 163: 981 (1986)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Vadim Kronin
    • 1
  • Gabriele Süss
    • 1
  • Ken Winkel
    • 1
  • Ken Shortman
    • 1
  1. 1.The Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia

Personalised recommendations