Enhanced Antigen Presenting Cell Function Following in Vivo Priming

  • Geneviève De Becker
  • Philippe Mockel
  • Jacques Urbain
  • Oberdan Leo
  • Muriel Moser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)


The population of cells able to present antigen to class II MHC-restricted, CD4+ T helper cells appears heterogenous and, in the mouse, includes B lymphocytes, macrophages and DC. R. Steinman and collaborators1 have shown that an antigen injected intravenously at high dose in a naive mouse was present in an immunogenic form on DC only, a finding that correlates with the unique capacity of the DC in stimulating antigen-specific, naive T cells. The cellular interactions leading to a specific immune response following the encounter with an antigen may be different in a primary and a secondary response. In particular, B lymphocytes which bind proteins to surface lg receptors have been shown to present these proteins at very low concentrations in vitro and in vivo 2. Since antigen-specific B cells undergo clonal expansion, the B cells in a primed mouse represent a significant proportion among all antigen-presenting cells. Furthermore, circulating antigen-specific antibodies may form complexes with the antigen which can be taken up by FcR+ cells3. In this paper, we tested whether B cells and macrophages could play a role in antigen presentation in an anamnestic response in vivo, and compared the antigen presentation during a secondary versus a primary response.


Spleen Cell Peritoneal Macrophage Primed Mouse Naive Mouse Immune Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crowley M, Inaba K, Steinman R. J Exp Med 1990; 172: 383–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Abbas AK, Haber S, Rock KL. J Immunol 1985; 135: 1661–7.PubMedGoogle Scholar
  3. 3.
    Lanzavecchia A. Annu Rev Immunol 1990; 8: 773–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Rubberti G, Sellins KS, Hill CM, Germain RN, Fathman CG, Linvingstone A. J Exp Med 1992; 175: 157–162.CrossRefGoogle Scholar
  5. 5.
    De Becker G. Sornasse T, Nabavi N, et al. Eur J Immunol 1994; 24: 1523–1528.CrossRefGoogle Scholar
  6. 6.
    Inaba K, Metlay JP, Crowley MT, Steinman RM. J Exp Med 1990; 172: 631–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Sonnasse T, Flamand V, De Becker G, et al. J Exp Med 1992; 175: 15–21.CrossRefGoogle Scholar
  8. 8.
    Inaba K, Steinman RM. J Exp Med 1984; 160: 1717–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Ronchese F, Hausmann B. J Exp Med 1993; 177: 679–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Luqman M, Bottomly K. J Immunol 1992; 149: 2300–6.PubMedGoogle Scholar
  11. 11.
    Constant S, Zain M, West J, Pasqualini T, Ranney P, Bottomly K. Eur J Immunol 1994; 24: 1073–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Croft M, Duncan DD, Swain SL. J Exp Med 1992; 176: 1431–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Croft M, Bradley LM, Swai SL. J Immunol 1994; 152: 2675–85.PubMedGoogle Scholar
  14. 14.
    Cassel DJ, Schwartz RH. J Exp Med 1994; 180: 1829–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Geneviève De Becker
    • 1
  • Philippe Mockel
    • 1
  • Jacques Urbain
    • 1
  • Oberdan Leo
    • 1
  • Muriel Moser
    • 1
  1. 1.Département de Biologie MoléculaireUniversité Libre de BruxellesRhode-Saint-GenèseBelgium

Personalised recommendations