Skip to main content

CD14 is Expressed by Subsets of Murine Dendritic Cells and Upregulated by Lipopolysaccharide

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 417))

Summary

The CD14 surface molecule is predominantly expressed by cells of myeloid origin and regarded as a specific marker for macrophages (Mø). Thus, in human mononuclear cell preparations, CD14 expression is a widely used parameter to distinguish Mø from dendritic cells (DC). Since a murine homologue of CD14 was recently identified, this study investigated expression of CD14 by murine Mø and DC. Flow cytometry with a monoclonal antibody directed against murine CD14 revealed that bone marrow-derived DC express CD14 to various extents during differentiation. Functionally, CD14high and CD14low DC did not differ significantly in their capacity to present alloantigen, protein antigen or immunogenic peptide. Furthermore, surface expression of CD14 could be modulated by interleukin (IL)-4 and LPS. Incubation of bone marrow-derived DC with IL-4 (100 U/ml) resulted in downregulation of CD14 surface expression, whereas exposure of BmDC to LPS (1 µg/ml) led to upregulation of CD14. After blockage of CD14 molecules by incubation of DC with anti-CD14 antibodies, downregulation of LPS triggered IL-1 release could be detected. In addition, other Mø markers such as CD11b, F4/80, BM8, and ER-TR9, are also expressed on DC. Therefore, we conclude that CD14, like other Mø markers, is expressed on murine DC during maturation. Thus, Mø and DC cannot be distinguished by flow cytometry using these markers. Moreover, CD14 may be involved in mediating LPS-induced activation of murine DC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Todd, R.F., Nadler, L.M., Schlossman, S.F. (1981) Antigens on human monocytes identified by monoclonal antibodies. J. Immunol. 126, 1435–1442.

    PubMed  Google Scholar 

  2. Ball, E.D., Graziano, R.F., Shen, L., Fanger, M.W. (1982) Monoclonal antibodies to novel myeloid antigens reveal human neutrophil heterogeneity. Proc. Natl. Acad. Sci. USA 79, 5374–5377.

    Article  PubMed  CAS  Google Scholar 

  3. Kielian, T.L., Blecha, F. (1995) CD14 and other recognition molecules for lipopolysaccharide: a review. Immunopharmacology 29, 187–205.

    Article  PubMed  CAS  Google Scholar 

  4. Wright, S.D. (1991) CD14 and immune response to lipopolysaccharide. Science (Wash. DC). 252, 1321–1325.

    Article  Google Scholar 

  5. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., Mathison, J.C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science (Wash. DC) 249, 1431–1434.

    Article  CAS  Google Scholar 

  6. Matsura, K., Ishida, T., Setoguchi, M., Higuchi, Y., Akizuki, S., Yamamoto, S. (1994) Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. J. Exp. Med. 179, 1671–1676.

    Article  Google Scholar 

  7. Ferrero, E., Hsieh, C.L., Francke, U., Goyert, S.M. (1990) CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. J. Immunol. 145, 331–336.

    PubMed  CAS  Google Scholar 

  8. Steinman, R.M., Witmer-Pack, M., Inaba, K. (1993) Dendritic cells: antigen presentation, accessory function and clinical relevance. Adv. Exp. Med. Biol. 329, 1–9.

    Article  PubMed  CAS  Google Scholar 

  9. Inaba, K., Inaba, M., Deguchi, M., Hagi, K., Yasumizu, R., Ikehara, S., Muramatsu, S., Steinman, R.M. (1993) Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc Natl Acad Sci USA 90, 3038–42.

    Article  PubMed  CAS  Google Scholar 

  10. Peters, J.H., Gieseler, R., Thiele, B., Steinbach, F. (1996) Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol. Today 17, 273–278.

    Article  PubMed  CAS  Google Scholar 

  11. Caux, C., Vanbervliet, B., Massacrier, C., Dezutter Dambuyant, C., de Saint Vis, B., Jacquet, C., Yoneda, K., Imamura, S., Schmitt, D., Banchereau, J. (1996) CD34’ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF plus TNFa. J. Exp. Med 184, 695–706.

    Article  PubMed  CAS  Google Scholar 

  12. Paglia, P., Girolomoni, G., Robbiati, F., Granucci, F., Ricciardi-Castagnoli, R. (1993) Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo. J. Exp. Med. 178, 1903–10.

    Article  Google Scholar 

  13. Granucci, F., Girolomoni, G., Lutz, M.B., Foti, M., Marconi, G., Gnocchi, R, Nolli, L., Ricciardi Castagnoli, P. (1994) Modulation of cytokine expression in mouse dendritic cell clones. Eur. J. Immunol 24, 2522–6.

    Article  PubMed  CAS  Google Scholar 

  14. Xu, S., Ariizumi, K., Caceres, D.G., Edelbaum, D., Hashimoto, K., Bergstresser, P.R., Takashima, A. (1995) Successive generation of antigen-presenting, dendritic cell lines from murine epidermis. J Immunol 154, 2697–705.

    PubMed  CAS  Google Scholar 

  15. Scheicher, C., Mehlig, M., Zecher, R., Reske, K. (1992) Dendritic cells from bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony stimulating factor. J. Immunol. Meth. 154, 153–264.

    Article  Google Scholar 

  16. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., Steinman, R. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony stimulating factor. J. Exp. Med. 176, 1693–1702.

    Article  PubMed  CAS  Google Scholar 

  17. S. Grabbe, K. Steinbrink, M. Steinert, T.A. Luger, T. Schwarz. 1995. Removal of the majority of epidermal Langerhans cells by topical or systemic steroid application enhances the effector phase of murine contact hypersensitivity. J. Immunol. 155: 4207–4217.

    PubMed  CAS  Google Scholar 

  18. Ruppert, J., Peters, J.H. (1991) Accessory cell function during monocyte/macrophage differentiation: relation to interleukin-1 (IL-1 beta) production and release. EurJ Cell Bio1 55, 352–61.

    Google Scholar 

  19. Romani, N., Lenz, A., Glassel, H., Stossel, H., Stanzl, U., Majdic, O., Fritsch, R, Schuler, G. (1989) Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J. Invest. Dermatol. 93, 600–609.

    Article  PubMed  CAS  Google Scholar 

  20. Sallusto, F., Lanzavecchia, A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down-regulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–18.

    Article  PubMed  CAS  Google Scholar 

  21. Steinman, R.M. (1991) The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296.

    Article  PubMed  CAS  Google Scholar 

  22. Greame-Cook, F., Bhan, A.K., Harris, N.L. (1993) Immunohistochemical characterization of intraepithelial and subepithelial mononuclear cells of the upper airways. Am. J. Pathol. 143, 1416–1422.

    Google Scholar 

  23. O“Doherty, U., M. Peng, S. Gezelter, W. J. Swiggard, M. Betjes, N. Bhardwaj, and R. M. Steinman. (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82, 487–493.

    Google Scholar 

  24. Thomas, R., and R. E. Lipsky (1994) Human peripheral blood dendritic cell subsets. Isolation and characterisation of precursor and mature antigen-presenting cells. J. Immunol. 153, 4016–4027.

    PubMed  CAS  Google Scholar 

  25. Zhou, L.J., Tedder, T.F. (1996) CD14* blood monocytes can differentiate into functionally mature CD83’ dendritic cells. Proc. Natl. Acad. Sci. USA. 93, 2588–92

    Article  PubMed  CAS  Google Scholar 

  26. Ruppert, J., Friedrichs, D., Xu, H., Peters, J.H. (1991) IL-4 decreases the expression of monocyte differentiation marker CDI4, paralleled by an increasing accessory potency. Immunobiology 182, 449–464.

    Article  PubMed  CAS  Google Scholar 

  27. Bazil, V., Strominger, J.L. (1991) Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J. Immunol. 147, 1567–1571.

    PubMed  CAS  Google Scholar 

  28. Roake, J.A., Rao, A.S., Morris, P.J., Larsen, C.P., Hankins, D.F., Austyn, J.M. (1995) Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J. Exp. Med. 181, 2237–2247.

    Article  PubMed  CAS  Google Scholar 

  29. Couturier, C., Jahns, G., Kazatchine, M., Haefner-Cavaillon, N. (1992) Membrane molecules which trigger the production of interleukin-I and tumor necrosis factor-a by lipopolysaccharide-stimulated human monocytes. Eur J. Immunol. 22, 1461–1466.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Grabbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mahnke, K., Becher, E., Ricciardi-Castagnoli, P., Luger, T.A., Schwarz, T., Grabbe, S. (1997). CD14 is Expressed by Subsets of Murine Dendritic Cells and Upregulated by Lipopolysaccharide. In: Ricciardi-Castagnoli, P. (eds) Dendritic Cells in Fundamental and Clinical Immunology. Advances in Experimental Medicine and Biology, vol 417. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9966-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9966-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9968-2

  • Online ISBN: 978-1-4757-9966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics