Migration of Dendritic Cells in 3D-Collagen Lattices

Visualisation of Dynamic Interactions with the Substratum and the Distribution of Surface Structures via a Novel Confocal Reflection Imaging Technique
  • Matthias Gunzer
  • Eckhart Kämpgen
  • Eva-B. Bröcker
  • Kurt S. Zänker
  • Peter Friedl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)


Migration is an inherent and prominent quality of dendritic cells (DC)1,2. In the past years numerous studies have analysed this aspect of DC biology. Quantitative aspects of DC migration have been tested in whole animal assays using different methods such as lymphcannulation3 or fluorescence labelling of migrating cells4,5. Skin-explant emigration assays were applied for in vitro studies6,7. Single DC have been investigated migrating on plastic surfaces8,9. We describe here a novel method for the analysis of individual cells migrating within a 3D-collagen substratum. The technique applies and further extends a system previously described by Fried10 for the analysis of lymphocyte migration. Using viable or fixed cells, the simultaneous visualisation and 3D-reconstruction of dynamic cell-interactions with the surrounding collagen-environment as well as the distribution of structures on the cell surface allows a more detailed analysis of the cell biology underlying the process of DC migration.


Dendritic Cell Collagen Fibre Human Dendritic Cell Dendritic Process Dendritic Cell Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    Steinman, R., Hoffman, L. and Pope, M. Maturation and migration of cutaneous dendritic cells.. I. Invest. Dermatol. 105, 2S - 7S (1995).CrossRefGoogle Scholar
  3. 3.
    Dandie, G. W., Ragg, S. J. and Muller, H. K. Migration of Langerhans cells from carcinogen-treated sheep skin. J. Invest. Dermatol. 99, 51S - 53S (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    van Wilsem, E. J., Breve, J., Kleijmeer, M. and Kraal, G. Antigen-bearing Langerhans cells in skin draining lymph nodes: phenotype and kinetics of migration. J. Invest. Dermatol. 103, 217–220 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    Wang, B., Kondo, S., Shivji, G. M., Fujisawa, H., Mak, T. W. and Sauder, D. N. Tumor necrosis factor receptor II (p75) signalling is required for the migration of Langerhans cells. Immunology 88, 284–288 (1996).PubMedCrossRefGoogle Scholar
  6. 6.
    Larsen, C. P. and Austyn, J. M. Langerhans cells migrate out of skin grafts and cultured skin: a model in which to study the mediators of dendritic leukocyte migration. Transplant. Proc. 23, 117–119 (1991).PubMedGoogle Scholar
  7. 7.
    Larsen, C. P., Steinman, R. M., Witmer-Pack, M., Hankins, D. F., Morris, P. J. and Austyn, J. M. Migration and maturation of Langerhans cells in skin transplants and explants. J. Exp. Med. 172, 1483–1493 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    Boehmelt, G., Madruga, J., Dörfler, R, et al. Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-ReIER. Cell 80, 341–352 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    Freudenthal, R. S. and Steinman, R. M. The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc. Natl. Acad. Sci. U. S. A. 87, 7698–7702 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    Friedl, P., Noble, P. B. and Zänker, K. S. Lymphocyte migration in three-dimensional collagen gels. Comparison of three quantitative methods for analysing cell trajectories. J. Immunol. Meth. 165, 157–165 (1993).CrossRefGoogle Scholar
  11. 11.
    Schuler, G. and Koch, F. in Epidermal Langerhans Cells ( ed Schuler, G.) 1st, 139–157 ( CRC-Press, Boca Raton, Ann Arbor, Boston, 1991 ).Google Scholar
  12. 12.
    Inaba, K., Inaba, M., Romani, N., et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693 1702 (1992).Google Scholar
  13. 13.
    Romani, N., Gruner, S., Brang, D., et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83–93 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    Romani, N., Lenz, A., Glassl, H., et al. Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J. Invest. Dermatol. 93, 600–609 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    Kämpgen, E., Koch, N., Koch, F., et al. Class I1 major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc. Natl. Acad. Sci. 88, 3014–3018 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    Schuler, G., Koch, F., Heufler, C., Kämpgen, E., Topar, G. and Romani, N. Murine epidermal Langerhans cells as a model to study tissue dendritic cells. Adv. Exp. Med. Biol. 329, 243–249 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    Schuler, G. and Steinman, R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161, 526–546 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Roake, J. A. and Austyn, J. M. The role of dendritic cells and T cell activation in allograft rejection. Exp. Nephrol. 1, 90–101 (1993).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Matthias Gunzer
    • 1
  • Eckhart Kämpgen
    • 2
  • Eva-B. Bröcker
    • 2
  • Kurt S. Zänker
    • 1
  • Peter Friedl
    • 1
    • 2
  1. 1.Institute of ImmunologyUniversity of Witten/HerdeckeWittenGermany
  2. 2.Department of DermatologyUniversity of WürzburgWürzburgGermany

Personalised recommendations