Intracellular Sorting of Proteins

  • Claudia Bibus
Part of the NATO ASI Series book series (NSSA, volume 125)


Compartmentalization is an essential requirement for cellular function and growth. Each compartment contains a unique set of proteins designed to perform specialized functions, such as oxidative phosphorylation within the mitochondria or ribosome assembly within the nucleolus. How do cells generate and maintain such an asymmetric, highly organized distribution of their proteins? Five major targets of protein transport have been studied in detail: (1) the eukaryotic secretory system; (2) the nucleus; (3) the mitochondria; (4) the chloroplasts; (5) the bacterial secretory system. The scope of this review does not allow in-depth treatment of all important aspects of protein sorting. For detailed reviews see Schekman (1985), Garoff (1985), Farquhar (1985) and Benson et al. (1985).


Signal Recognition Particle Mitochondrial Target Sequence Endoplasmic Reti Mitochondrial Import Precursor Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argan, C., Lusty, C.J. and Shore, G.C., 1983, Membrane and cytosolic components affecting transport of the precursor for ornithine carbamyl transferase into mitochondria, J. Biol. Chem., 258: 6667.PubMedGoogle Scholar
  2. Argan, C. and Shore, G.C., 1986, The precursor to ornithine carbamyl transferase is transported to mitochondria as a 5S complex containing an import factor, in press.Google Scholar
  3. Benson, S.A. and Silhavy, T.J., 1983, Information within the mature lamB protein necessary for localization to the otuer membrane of E. coli K12, Cell, 32: 1325.Google Scholar
  4. Benson, S.A., Hall, M.N. and Silhavy, T.J., 1985, Genetic analysis of protein export in Escherichia coli K12, Ann. Rev. Biochem., 54: 101.CrossRefGoogle Scholar
  5. Blobel, G. and Dobberstein, B., 1975, Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components, J. Cell Biol., 67: 852.PubMedCrossRefGoogle Scholar
  6. Böhni, P.C., Daum, G., Schatz, G., 1983, Import of proteins into mitochondria: partial purification of a matrix-located protease involved in cleavage of mitochondrial precursors, J. Biol. Chem., 258: 4937.PubMedGoogle Scholar
  7. Brown, M.S. and Goldstein, J.L., 1986, A receptor-mediated pathway for cholesterol homeostasis, Science, 232: 34.PubMedCrossRefGoogle Scholar
  8. Davey, J., Dimmock, N.J. and Colman, A., 1985, Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes, Cell, 40: 667.PubMedCrossRefGoogle Scholar
  9. Eilers, M. and Schatz, G., 1986, Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria, Nature, in press.Google Scholar
  10. Ellis, R.J., 1981, Chloroplast proteins: synthesis, transport and assembly, Ann. Rev. Plant Physiol., 32: 111.CrossRefGoogle Scholar
  11. Evans, E.A., Gilmore, R. and Blobel, G., 1986, Purification of micro-somal signal peptidase as a complex, Proc. Natl. Acad. Sci. USA, 83: 581.PubMedCrossRefGoogle Scholar
  12. Farquhar, M.G., 1985, Progress in unravelling pathways of Golgi traffic, Ann. Rev. Cell Biol., 1: 447.PubMedCrossRefGoogle Scholar
  13. Garoff, H., 1985, Using recombinant DNA techniques to study protein targeting in the eukaryotic cell, Ann. Rev. Cell Biol., 1: 403.PubMedCrossRefGoogle Scholar
  14. Gasser, S.M., Daum, G. and Schatz, G., 1982, Import of proteins into mitochondria: energy-dependent uptake of precursors by isolated mitochondria, J. Biol. Chem., 257: 13034.PubMedGoogle Scholar
  15. Gillespie, L.L., Argan, C., Taneja, A.T., Hodges, R.S., Freeman, K.B. and Shore, G.C., 1985, A synthetic signal peptide blocks import of precursor proteins destined for the mitochondrial inner membrane or matrix, J. Biol. Chem., 260: 16045.PubMedGoogle Scholar
  16. Gonzales-Noriega, A., Gruto, J.H., Talkad, V. and Sly, W.S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell. Biol., 85: 839.CrossRefGoogle Scholar
  17. Grossmann, A., Bartlett, S. and Chua, N.H., 1980, Energy-dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts, Nature, 285: 625.CrossRefGoogle Scholar
  18. Han, M.N., Hereford, L. and Herskowitz, I., 1984, Targeting of E. coli β-galactosidase to the nucleus in yeast, Cell, 36: 1057.CrossRefGoogle Scholar
  19. Hansen, W., Garcia, P.D. and Walter, P., 1986, In vitro protein translocation across the endoplasmic reticulum of Saccharomyces cerevisiae: Post-translational translocation and glycosylation of the precursor to α-factor, Cell, in press.Google Scholar
  20. Hay, R., Böhni, P. and Gasser, S., 1984, How mitochondria import proteins, Biochim. Biophys. Acta, 779: 65.PubMedCrossRefGoogle Scholar
  21. Hurt, E.C. and van Loon, A.P.G.M., 1986, How proteins find mitochondria and intramitochondrial compartments, Trends Biochem. Sci., 11: 204.CrossRefGoogle Scholar
  22. Hurt, E.C., Soltanifar, N., Goldschmidt-Clérmont, M., Rochaix, J.D. and Schatz, G., 1986, The cleavable presequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria, EMBO J., June issue.Google Scholar
  23. Ito, A., Ogishima, T., Ou, W., Omura, T., Aoyagi, H., Lee, S., Mihara, H. and Izumiya, N., 1985, Effects of synthetic model peptides resembling to the extension peptides of mitochondrial enzyme precursors on import of the precursors into mitochondria, J. Biochem. (Tokyo), 98: 1571.Google Scholar
  24. Kalderon, D., Roberts, B.L., Richardson, W.D. and Smith, A.E., 1984, A short amino acid sequence able to specifiy nuclear localization, Cell, 39: 499.PubMedCrossRefGoogle Scholar
  25. Lingappa, V.R., Chaidez, J., Yost, C.S. and Hedgpeth, J., 1984, Determinants for protein localization: β-lactamase signal sequence directs globin across microsomal membranes, Proc. Natl. Acad. Sci., 81: 456.PubMedCrossRefGoogle Scholar
  26. McAda, P.C. and Douglas, M.G., 1982, A neutral metalloendoprotease involved in the processing of an F ATPase subunit precursor in mitochondria, J. Biol. Chem., 257: 3177.PubMedGoogle Scholar
  27. Milstein, C., Brownlee, G., Harrison, T. and Mathews, M.B., 1972, A possible precursor of immunoglobulin light chains, Nature New Biol., 239: 117.PubMedCrossRefGoogle Scholar
  28. Miura, S., Mori, M., Amaya, Y. and Tatibana, M., 1982, A mitochondrial protease that cleaves the precursor of ornithine carbamoyl transferase, Eur. J. Biochem., 122: 641.PubMedCrossRefGoogle Scholar
  29. Miura, S., Mori, M., Tatibana, M., 1983, Transport of ornithine carbamoyltransferase precursor into mitochondria: Stimulation by potassium ion, magnesium ion and a reticulocyte cytosolic protein(s), J. Biol. Chem., 258: 6671.PubMedGoogle Scholar
  30. Müller, M. and Blobel, G., 1984, In vitro translocation of bacterial proteins across the plasma membrane of E. coli, Proc. Natl. Acad. Sci. USA, 81: 7421.PubMedCrossRefGoogle Scholar
  31. Ohta, S. and Schatz, G., 1984, A purified precursor polypeptide requires a cytosolic protein fraction for import into mitochondria, EMBO J., 3: 651.PubMedGoogle Scholar
  32. Palade, G., 1975, Intracellular aspects of the process of protein secretion, Science, 189: 347.PubMedCrossRefGoogle Scholar
  33. Perara, E., Rothman, R.E. and Lingappa, V.R., 1986, Uncoupling trans-location from translation: Implications for transport of proteins across membranes, Science, 232: 348.PubMedCrossRefGoogle Scholar
  34. Randall, L.L., 1983, Translocation of domains of nascent periplasmic proteins across the cytoplasmic membrane is independent of elongation, Cell, 33: 231.PubMedCrossRefGoogle Scholar
  35. Richardson, W.D., Roberts, B.L. and Smith, A.E., 1986, Nuclear location signals in polyoma virus large-T., Cell, 44: 77.PubMedCrossRefGoogle Scholar
  36. Roise, D., Horvath, S.J., Tomich, J.M., Richards, J.H. and Schatz, G., 1986, A chemically synthesized presequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers, EMBO J., June issue.Google Scholar
  37. Roth, M.G., Doyle, C., Sambrook, J. and Gething, M.J., 1986, Heterologous transmembrane and cytoplasmic domains direct functional chimeric influenza virus hemagglutinins into the endocytic pathway, J. Cell Biol., 102: 1271.PubMedCrossRefGoogle Scholar
  38. Rothblatt, J.A. and Meyer, D.I., 1986, Secretion in yeast: Reconstitution of the translocation and glycosylation of α-factor and invertase in a homologous cell-free system, Cell, 44: 619.PubMedCrossRefGoogle Scholar
  39. Rothman, J.E., 1985, The compartmental organization of the Golgi apparatus, Sci. Am., 253: 74.PubMedCrossRefGoogle Scholar
  40. Schekman, R., 1985, Protein localization and membrane traffic in yeast, Ann. Rev. Cell. Biol., 1: 115.PubMedCrossRefGoogle Scholar
  41. Schleyer, M., Schmidt, B. and Neupert, W., 1982, Requirement of a membrane potential for post-translational transfer of proteins into mitochondria, Eur. J. Biochem., 125: 109.PubMedCrossRefGoogle Scholar
  42. Schleyer, M. and Neupert, W., 1985, Transport of proteins into mitochondria: translocational intermediates spanning contact sites between outer and inner membranes, Cell, 43: 339.PubMedCrossRefGoogle Scholar
  43. Von Heijne, G., 1986, Mitochondrial targeting sequences may form amphiphilic helixes, EMBO J., June issue.Google Scholar
  44. Walter, P., Gilmore, R. and Blobel, G., 1984, Protein translocation across the endoplasmic reticulum, Cell, 38: 5.PubMedCrossRefGoogle Scholar
  45. Waters, M.G. and Blobel, G., 1986, Secretory protein translocation in a yeast cell-free system can occur post-translationally and requires ATP hydrolysis, J. Cell Biol., 102: 1543.PubMedCrossRefGoogle Scholar
  46. Wickner, W.T., and Lodish, H.F., 1985, Multiple mechanisms of protein insertion into and across membranes, Science, 239: 400.CrossRefGoogle Scholar
  47. Yaffe, M.P. and Schatz, G., 1984, Two nuclear mutations that block mitochondrial protein import in yeast, Proc. Natl. Acad. Sci. USA, 81: 4819.PubMedCrossRefGoogle Scholar
  48. Yaffe, M.P., Ohta, S. and Schatz, G., 1985, A yeast mutant temperature-sensitive for mitochondrial assembly is deficient in a mitochondrial protease activity that cleaves imported precursor polypeptides, EMBO J., 4: 2069.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Claudia Bibus
    • 1
  1. 1.BiocenterUniversity of BaselBaselSwitzerland

Personalised recommendations