Skip to main content

Comparison of Reconfiguration Schemes for Defect Tolerant Mesh Arrays

  • Chapter
Defect and Fault Tolerance in VLSI Systems
  • 88 Accesses

Abstract

A large number of reconfiguration schemes have been presented for defect tolerant mesh arrays. Here a number of such schemes will be compared. Area and speed based measures are presented, along with a summary of the methods required to estimate area overhead, processor utilization, yield and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Carter and D.F. Guise. Analysis of signal propagation dealys and chip level performance due to on-chip interconnections. In ICCD-83, pages 218-221, IEEE, 1983.

    Google Scholar 

  2. R.A. Evans. A self-organising fault-tolerant, 2-dimensional array. In VLSI-85, Tokyo, pages 233-242, August 26–28 1985.

    Google Scholar 

  3. P. Pranzon. Fault tolerance in VLSI. PhD thesis, The University of Adelaide, December 1988.

    Google Scholar 

  4. P. Franzon and S.K. Tewksbury. ‘Chip Frame’ scheme for reconfigurable mesh-connected arrays. In International workshop on Wafer Scale Integration, Uxbridge England, September 1987.

    Google Scholar 

  5. P.D. Franzon. Interconnect strategies for fault tolerant 2D VLSI arrays. In ICCD-86, pages 230-234, October 1986.

    Google Scholar 

  6. P.D. Franzon. Yield modeling for fault tolerant VLSI. In A. McCabe W. Moore and R. Urquhart, editors, Systolic arrays, papers presented at the first international workshop on systolic arrays, Oxford, England July, 1986, pages 207-216, Adam Hilger, Bristol and Boston, 1986.

    Google Scholar 

  7. P.D. Franzon and K. Eshraghian. Achieving ULSI though defect tolerance. International journal of VLSI computer aided design, 1(1):73–90, 1989.

    Google Scholar 

  8. Kye Hedlund. Wafer Scale Integration of CHiP processors. PhD thesis, Purdue University, 1982.

    Google Scholar 

  9. Kye Hedlund and Larry Snyder. Systolic architectures — a wafer scale approach. In Proc. ICCD-84, pages 604-610, IEEE, 1984.

    Google Scholar 

  10. I. Koren and M.A. Breuer. On area and yield considerations for fault-tolerant VLSI processor arrays. IEEE trans. Comp., C-33(1):21–27, January 1984.

    Article  Google Scholar 

  11. I. Koren and D.K. Pradhan. Yield and performance enhancement through redundancy in VLSI and WSI multiprocessor systems. Proc. IEEE, 74(5):699–711, May 1986.

    Article  Google Scholar 

  12. H.T. Kung and M.S. Lam. Wafer-scale integration and two level pipelined implementation of systolic arrays. J. Parallel and Distributed Computing, 1:32–64, 1984.

    Article  Google Scholar 

  13. W. Maxwood and A.P. Clarke. Fault tolerant systolic architectures. In Proc. 3rd National Workshop on Fault Tolerant Computing, 1985. Monash, Melbourne.

    Google Scholar 

  14. W.R. Moore and R. Mahat. Fault-tolerant communications for wafer-scale integration of a processor array. Microelectron. Reliab., 25(2):291–294, 1985.

    Article  Google Scholar 

  15. S. Pateras and J. Rajski. Self-reconfiguring interconnection network for a fault tolerant mesh-connected array of processors. Electronics Letters, 24(10):600–602, 12 May 1988.

    Article  Google Scholar 

  16. J.I. Raffel, A.H. Anderson, G.H. Chapman, K.H. Konkle, B. Mathur, A.M. Soares, and P.W. Wyatt. A wafer-scale digital integrator using restructurable VLSI. IEEE Trans. Electron Devices, ED-32:479–486, 1985.

    Article  Google Scholar 

  17. C.H. Stapper. The effects of wafer to wafer defect density variations on integrated circuit defect and fault distributions. IBM J. Res. Develop, 29(1):87–97, January 1985.

    Article  Google Scholar 

  18. C.H. Stapper, A.N. McLaren, and M. Dreckman. Yield model for productivity optimization of VLSI memory chips with redundancy and partially good product. IBM J. Res. Develop., 24(3):398–399, May 1980.

    Article  Google Scholar 

  19. P.W. Wyatt, J.I. Raffel, G.H. Chapman, J.A. Burns, and T.O. Herndon. Process considerations in restructurable VLSI for wafer-scale integration. In IEDM 84, pages 626-629, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Franzon, P.D. (1990). Comparison of Reconfiguration Schemes for Defect Tolerant Mesh Arrays. In: Stapper, C.H., Jain, V.K., Saucier, G. (eds) Defect and Fault Tolerance in VLSI Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9957-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9957-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9959-0

  • Online ISBN: 978-1-4757-9957-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics