Quantum Monte Carlo Simulations of the Davydov Model

  • Xidi Wang
  • David W. Brown
  • Katja Lindenberg
Part of the NATO ASI Series book series (NSSB, volume 243)


Through an application of the quantum Monte Carlo technique, we investigate the thermal equilibrium properties of the one-dimensional model proposed by Davydov for the description of energy transport processes in the α-helix. The calculations in this paper are free from uncontrollable approximations. The deformation of the lattice about a single (mobile) excitation is computed at a number of temperatures for a variety of coupling strengths. Broad and smooth coherent localized quasi-particle units are observed at low temperatures for some parameters of the system. For the “standard” α-helix data, the quasi-particle is embedded in strong fluctuations and is very localized. At temperatures greater than a few Kelvins, the quasi-particle attains its most localized form. We also considered scenarios in which several excitations are present in the system simultaneously; some preliminary results for the density-density correlation are calculated. The structure of polaron clusters is found, and their implication for biological systems is discussed.


Matrix Element Partition Function World Line Quantum Fluctuation Small Polaron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Davydov and N. I. Kislukha, Phys. Status Solidi 59, 465 (1973); Zh. Eksp. Teor. Fiz. 71, 1090 (1976) [Sov. Phys. JETP 44, 571 (1976)].CrossRefGoogle Scholar
  2. 2.
    A. S. Davydov, Physica Scr. 20, 387 (1979); Usp Fiz. Nauk. 138, 603 (1982) [Sov. Phys. Usp. 25, 898 (1982)]; Zh. Eksp. Teor. Fiz. 51, 789 (1980) [Sov. Phys. JETP 78, 397 (1980)].ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    A. S. Davydov, Solitons in Molecular Systems, (Reidel, Boston, 1985).zbMATHCrossRefGoogle Scholar
  4. 4.
    A. S. Davydov, in Solitons, edited by S. E. Trullinger, V. E. Zakharov, and V. I. Pokrovsky (North-Holland, New York, 1986).zbMATHGoogle Scholar
  5. 5.
    A. S. Davydov, Sov. Phys. JETP 51(2), 397 (1980).ADSGoogle Scholar
  6. 6.
    A. C. Scott, Phys. Rev. A 26, 587 (1982); 27, 2767 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, Phys. Rev. B 30, 4703 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    P. S. Lomdahl and W. C. Kerr, Phys. Rev. Lett. 55, 1235 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    Albert F. Lawrence, James C. McDaniel, David B. Chang, Brian M. Pierce and Robert R. Birge, Phys. Rev. A 33, 1188(1986).ADSCrossRefGoogle Scholar
  10. 10.
    P. S. Lomdahl and W. C. Kerr, in Physics of Many Particle Systems, edited by A. S. Davydov (Naukova Dumka, Kiev, 1988).Google Scholar
  11. 11.
    L. Cruzeiro, J. Halding, P. L. Christiansen, O. Skovgaard, A. C. Scott, Phys. Rev. A 37, 880 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    Xidi Wang, David W. Brown and Katja Lindenberg, Phys. Rev. Lett. 62, 1769 (1989).Google Scholar
  13. 13.
    G. Careri, U. Buontempo, F. Carta, E. Gratton and A. C. Scott, Phys. Rev. Lett. 51, 304 (1983)ADSCrossRefGoogle Scholar
  14. G. Careri, U. Buontempo, F. Galluzi, A. C. Scott, E. Gratton and E. Shyamsunder, Phys. Rev. B 30, 4689 (1984)ADSCrossRefGoogle Scholar
  15. A. C. Scott, E. Gratton, E. Shyamsunder and G. Careri, Phys. Rev. B 32, 5551 (1985).ADSCrossRefGoogle Scholar
  16. 14.
    R. Knox, D. Magde, L. Hancock, and D. Wuttke, Bull. Am. Phys. Soc. 32, 799 (1987).Google Scholar
  17. 15.
    A. C. Scott, I. J. Bigio and C. T. Johnston, Phys. Rev. B 39, 12883 (1989).ADSCrossRefGoogle Scholar
  18. 16.
    David W. Brown, Katja Lindenberg and Bruce J. West, Phys. Rev. A 33, 4014 (1986).ADSGoogle Scholar
  19. 17.
    David W. Brown, Katja Lindenberg and Bruce J. West, Phys. Rev. A 33, 4110 (1986).MathSciNetADSCrossRefGoogle Scholar
  20. 18.
    David W. Brown, Katja Lindenberg, and Bruce J. West, Phys. Rev. Lett. 57, 2341 (1986); 3124 (1986); Phys. Rev. B 35, 6169 (1987).ADSCrossRefGoogle Scholar
  21. 19.
    A. C. Scott, Phil. Trans. R. Soc. A 315, 423 (1985).ADSCrossRefGoogle Scholar
  22. 20.
    W. C. Kerr and P. S. Lomdahl, Phys. Rev. B 35, 3629 (1987).ADSCrossRefGoogle Scholar
  23. 21.
    Xidi Wang, David W. Brown, Katja Lindenberg and Bruce J. West, Phys. Rev. A 37, 3557 (1988).ADSCrossRefGoogle Scholar
  24. 22.
    R. Rajaraman, in Solitons and Instantons (North-Holland, New York, 1948).Google Scholar
  25. 23.
    Gerd Venzl and Signait F. Fischer, J. Chem. Phys. 81, 6090 (1984); Phys. Rev. B 32, 6437 (1985).ADSCrossRefGoogle Scholar
  26. 24.
    A. M. Polyakov, Gauge Fields and Strings (Harwood Academic Publishers, New York, 1987).Google Scholar
  27. 25.
    M. Suzuki, S. Miyashita and A. Kuroda, Prog. Theor. Phys. 58, 1377 (1977).ADSzbMATHCrossRefGoogle Scholar
  28. 26.
    J. W. Negele and H. Orland in Quantum Many-Particle Systems, (Addison-Wesley, Reading, Mass., 1988).zbMATHGoogle Scholar
  29. 27.
    J. E. Hirsch, R. L. Sugar, D. J. Scalapino and R. Blankenbecker, Phys. Rev. B 26, 5033 (1982).ADSCrossRefGoogle Scholar
  30. 28.
    R. M. Fye, Phys. Rev. B 33, 6271 (1986).ADSCrossRefGoogle Scholar
  31. 29.
    M. Suzuki, Commun. Math. Phys. 51, 183 (1976).ADSzbMATHCrossRefGoogle Scholar
  32. 30.
    M. Creutz and B. Freedman, Ann. Phys. 132, 427 (1981).MathSciNetADSCrossRefGoogle Scholar
  33. 31.
    David W. Brown and Zoran Ivic, Phys. Rev. B 40, 9876 (1989-I).ADSCrossRefGoogle Scholar
  34. 32.
    Xidi Wang, David W. Brown and Katja Lindenberg, Phys. Rev. B 39, 5366 (1989).ADSCrossRefGoogle Scholar
  35. 33.
    J. P. Cottingham and J. W. Schweitzer, Phys. Rev. Lett. 62, 1792 (1989).ADSCrossRefGoogle Scholar
  36. 34.
    Xidi Wang, Doctoral Thesis (University of California, San Diego, 1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Xidi Wang
    • 1
  • David W. Brown
    • 2
  • Katja Lindenberg
    • 2
    • 3
  1. 1.Department of Physics, B-019University of California at San DiegoLa JollaUSA
  2. 2.Institute for Nonlinear Science, R-002University of California at San DiegoLa JollaUSA
  3. 3.Department of Chemistry, B-040University of California at San DiegoLa JollaUSA

Personalised recommendations