Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 243))

Abstract

The title of this article is a paraphrase of another by the high-energy physicist Sidney Drell [2]. The latter article asks the question “When is a particle?” and deals with the changing standards of proof which lead us today to accept as “real” some fundamental particles (quarks) which we may never observe. Our situation is somewhat similar in that “hard evidence” of the existence of Davydov solitons remains elusive despite many years of effort expended in their study. As has been revealed during the discussions at this meeting, a part of this elusiveness does not arise from genuine problems of physics but from problems of communication between workers in the field. Among the latter is a considerable variance in the accepted meanings of the central terms “soliton” and “Davydov soliton” themselves. While most of us have a working knowledge of what the latter term means, the lack of a precise definition has been a root cause of some of the softness in the concept of the Davydov soliton. The physics of the underlying physical problem is, of course, completely indifferent to such linguistic difficulties which are purely of human origin; it is well, therefore, not to imbue them with undue importance. However, as the technical portion of this paper addresses a rather broad spectrum of behaviors open to an exciton in a deformable solid, we shall find it necessary to impose some precision on the terms to be used. In our general discussion, we will try use more general terms; when we encounter more distinct and special structures, we will try to preserve the distinctions in our language. It is inevitable that our terminology will conflict with that accepted by some segments of our audience; however, we hope that that will not prevent our message from being understood.

“We [conclude] that classical concepts cannot be regarded as limiting forms of quantum concepts, but must instead be combined with limiting forms of quantum concepts in such a way that, in a complete description, each complements the other.” —David Böhm [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. David Böhm, Quantum Theory, (Prentice-Hall, New York, 1951).

    Google Scholar 

  2. Sidney Drell, Physics Today 31 No. 6, 23 (1978).

    Article  Google Scholar 

  3. T. D. Lee, Particle Physics and Introduction to Field Theory, Contemporary Concepts in Physics, Vol. 1, edited by H. Feshbach, N. Bloembergen, L. Kadanoff, M. Ruderman, S. B. Treiman and H. Primakoff (Harwood Academic Publishers, New York, 1988).

    Google Scholar 

  4. A. S. Davydov, Phys. Stat. Sol. 36, 211 (1969)

    Article  ADS  Google Scholar 

  5. A. S. Davydov and N. I. Kislukha, Phys. Stat. Sol. 59, 465 (1973); Zh. Eksp. Teor. Fiz. 71, 1090 (1976) [Sov. Phys.-JETP 44, 571 (1976)]

    Article  ADS  Google Scholar 

  6. A. S. Davydov, Phys. Scr. 20, 387 (1979).

    Article  ADS  MATH  Google Scholar 

  7. L. D. Landau, Phys. Zeit. Sowjetunion 3, 664 (1933)

    MATH  Google Scholar 

  8. S. I. Pekar, Zh. Eksp. Theor. Fiz. 16, 335 (1946)

    Google Scholar 

  9. L. D. Landau and S. I. Pekar, Zh. Eksp. Teor. Fiz. 18, 419 (1948).

    Google Scholar 

  10. H. Fröhlich, H. Pelzer and S. Zieman, Phil. Mag. 41, 221 (1950)

    MATH  Google Scholar 

  11. H. Fröhlich, Proc. R. Soc. London Ser. A 215, 291 (1952); Adv. Phys. 3, 325 (1954).

    Article  ADS  MATH  Google Scholar 

  12. I. Pekar, Untersuchungen Uber die Electronentheorie der Kristalle, (Akademie Verlag, Berlin, 1954).

    Google Scholar 

  13. T. Holstein, Ann. Phys. (N.Y.) 8, 326 (1959).

    ADS  Google Scholar 

  14. Emmanuel I. Rashba, in Excitons, edited by E. I. Rashba and M. D. Sturge (North-Holland, Amsterdam, 1982).

    Google Scholar 

  15. M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa and E. Hanamura, Excitonic Processes in Solids, Springer Series in Solid-State Sciences, Vol. 60 (Springer-Verlag, Berlin, 1986).

    Book  Google Scholar 

  16. Xidi Wang, David W. Brown, Katja Lindenberg and Bruce J. West, Phys. Rev. A 37, 3557 (1988).

    Article  ADS  Google Scholar 

  17. David W. Brown, Katja Lindenberg and Bruce J. West, Phys. Rev. A 33, 4104 (1986); David W. Brown, Bruce J. West and Katja Lindenberg, Phys. Rev. A 33, 4110 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  18. A. S. Davydov, Zh. Eksp. Teor. Fiz. 51, 789 (1980) [Sov. Phys.-JETP 78, 397 (1980)].

    ADS  Google Scholar 

  19. M. J. Skrinjar, D. V. Kapor and S. D. Stojanovic, Phys. Rev. A 37, 639 (1988).

    Article  ADS  Google Scholar 

  20. David W. Brown, Bruce J. West and Katja Lindenberg, Phys. Rev. A 37, 642 (1988).

    Article  ADS  Google Scholar 

  21. M. J. Skrinjar, D. V. Kapor and S. D. Stojanovic, Phys. Rev. A. 38, 6402 (1988).

    Article  ADS  Google Scholar 

  22. Q. Zhang, V. Romero-Rochin and R. Silbey, Phys. Rev. A 38, 6409 (1988).

    Article  ADS  Google Scholar 

  23. P. Langhoff, S. T. Epstein and M. Karplus, Rev. Mod. Phys. A 44, 602 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Frenkel, Wave Mechanics, Advanced General Theory (Clarendon Press, Oxford, 1974).

    Google Scholar 

  25. Peter Kramer and Marcos Saraceno, Geometry of the Time-Dependent Variational Principle in Quantum Mechanics, Lecture Notes in Physics, Vol. 140, edited by J. Ehlers, K. Hepp, R. Kippenhahn, H. A. Weidenmüller and J. Zittartz (Springer-Verlag, New York, 1981).

    Chapter  Google Scholar 

  26. David W. Brown, Phys. Rev. A 37, 5010 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  27. I. G. Lang and Yu. A. Firsov Zh. Eksp. Teor. Fiz. 43, 1834 (1962).

    Google Scholar 

  28. T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).

    Article  ADS  Google Scholar 

  29. P. Ehrenfest, Z. Phys. 45, 455 (1927).

    Article  ADS  MATH  Google Scholar 

  30. David W. Brown and Zoran Ivic, Phys. Rev. B 40, 9876 (1989-I).

    Article  ADS  Google Scholar 

  31. Yutaka Toyozawa, Prog. Theor. Phys. 26, 29 (1961); Yutaka Toyozawa, in Organic Molecular Aggregates, edited by P. Reineker, H. Haken and H. C. Wolf (Springer-Verlag, Berlin, 1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. David Yarkony and Robert Silbey, J. Chem. Phys. 65, 1042 (1976); 67, 5818 (1977).

    Article  ADS  Google Scholar 

  33. M. Sataric, Z. Ivic, Z. Shemsedini and R. Zakula, J. Molec. Elec. 4, 223 (1988).

    Google Scholar 

  34. Zoran Ivic and David W. Brown, Phys. Rev. Lett. 63, 426 (1989).

    Article  ADS  Google Scholar 

  35. A. S. Davydov, Solitons in Molecular Systems (Reidel Publishing Co., Boston 1985).

    Google Scholar 

  36. Gerd Venzl and Signait F. Fischer, J. Chem. Phys. 81, 6090 (1984); Phys. Rev. B 32, 6437 (1985).

    Article  ADS  Google Scholar 

  37. D. M. Alexander, Phys. Rev. Lett. 54, 138 (1985); D. M. Alexander and J. A. Krumhansl, Phys. Rev. B 33, 7172 (1986).

    Article  ADS  Google Scholar 

  38. H.-B. Schüttler and T. Holstein, Ann. Phys. 166, 93 (1986).

    Article  ADS  Google Scholar 

  39. A. C. Scott, Philos. Trans. R. Soc. London Ser. A 315, 423 (1985).

    Article  ADS  Google Scholar 

  40. P. S. Lomdahl and W. C. Kerr, Phys. Rev. Lett. 55, 1235 (1985).

    Article  ADS  Google Scholar 

  41. Albert F. Lawrence, James C. McDaniel, David B. Chang, Brian M. Pierce and Robert R. Birge, Phys. Rev. A 33, 1188(1986).

    Article  ADS  Google Scholar 

  42. L. Cruzeiro, J. Haiding, P. L. Christiansen, O. Skovgaard, and A. C. Scott, Phys. Rev. A 37, 880 (1988).

    Article  ADS  Google Scholar 

  43. Xidi Wang, David W. Brown, Katja Lindenberg, Phys. Rev. Lett. 62, 1796 (1989).

    Article  ADS  Google Scholar 

  44. David W. Brown, Phys. Rev. B 39, 8122 (1989-II).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, D.W., Lindenberg, K., Wang, X. (1990). When Is A Soliton?. In: Christiansen, P.L., Scott, A.C. (eds) Davydov’s Soliton Revisited. NATO ASI Series, vol 243. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9948-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9948-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9950-7

  • Online ISBN: 978-1-4757-9948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics