Advertisement

Quantum and Classical Descriptions of Chaos in the DST Equation

  • H. K. Feddersen
  • L. Cruzeiro-Hansson
  • R. Flesch
  • P. L. Christiansen
  • M. Salerno
  • A. C. Scott
Part of the NATO ASI Series book series (NSSB, volume 243)

Abstract

In this paper we will consider the discrete self-traping (DST) equation [1] with only three freedoms, the simplest case in which the DST equation may show chaotic dynamics. The dispersion matrix M is throughout taken to be
$$ M = \left[ {\begin{array}{*{20}c} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array} } \right] $$
(1)
.

Keywords

Interpolation Formula Semiclassical Limit Wigner Distribution Quantum Chaos Dispersion Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.C. Eilbeck, P.S. Lomdahl, and A.C. Scott, Physica 16D (1985) 318 and the contributions to these proceedings by J.C. Eilbeck and M. Salerno.MathSciNetADSGoogle Scholar
  2. [2]
    A.C. Scott and J.C. Eilbeck, Phys. Lett. A119 (1986) 60.MathSciNetADSGoogle Scholar
  3. [3]
    M.V. Berry and M. Robnik, J. Phys. A17 (1984) 2413.MathSciNetADSGoogle Scholar
  4. [4]
    O. Bohigas and M.-J. Giannoni, “Chaotic motion and random matrix theories” in Mathematical and computational methods in nuclear physics (eds. J.S. Dehesa, J.M.G. Gomez and A. Polls), Lect. Notes in Physics 209, Springer, Berlin (1984) 1.Google Scholar
  5. [5]
    E. Haller, H. Köppel and L.S. Cederbaum, Chem. Phys. Lett. 101 (1983) 215.ADSCrossRefGoogle Scholar
  6. [6]
    L. Cruzeiro-Hansson, H. Feddersen, R. Flesch, P.L. Christiansen, M. Salerno and A.C. Scott, “Classical and quantum analysis of chaos in the discrete self-trapping equation” (submitted)Google Scholar
  7. [7]
    M.V. Berry and M. Taber, Proc. R. Soc. London A356 (1977) 375.ADSGoogle Scholar
  8. [8]
    P. Pechukas, Phys. Rev. Lett. 51 (1983) 943.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    O. Bohigas, M.J. Giannoni and C. Schmit, Phys. Rev. Lett. 54 (1984) 1.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    T.H. Seligman, J.J.M. Verbaarschot and M.R. Zirnbauer, Phys. Lett. 53 (1984) 215.CrossRefGoogle Scholar
  11. [11]
    D. Wintgen and H. Friedrich, Phys. Rev. A35 (1987) 1464.ADSGoogle Scholar
  12. [12]
    T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey and S.S.M. Wong, Rev. Mod. Phys. 53 (1981) 385.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S. De Filippo, M. Fusco Girard and M. Salerno, “Avoided crossing and next neighbour level spacings for the quantum DST equation”, Nonlinearity (to appear)Google Scholar
  14. [14]
    H.-D. Meyer, J. Chem. Phys. 84 (1986) 3147.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    T.H. Seligman and J.J.M. Verbaarschot, J. Phys. A18 (1985) 2227.MathSciNetADSGoogle Scholar
  16. [16]
    H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading, Massachusetts (1980).zbMATHGoogle Scholar
  17. [17]
    S. De Filippo, M. Fusco Girard and M. Salerno, Physica 29D (1988) 421.ADSGoogle Scholar
  18. [18]
    G. Casati, B.V. Chirikov and I. Guarneri, Phys. Rev. Lett. 54 (1985) 1350.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    T. Zimmerman, H.-D. Mayer, H. Köppel and L.S. Cederbaum, Phys. Rev. A 33 (1986) 4334.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. K. Feddersen
    • 1
  • L. Cruzeiro-Hansson
    • 1
  • R. Flesch
    • 1
  • P. L. Christiansen
    • 1
  • M. Salerno
    • 1
  • A. C. Scott
    • 1
  1. 1.Laboratory of Applied Mathematical PhysicsThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations