Molecular Crystals and Localized Vibrational States

  • A. Migliori
  • A. M. Clogston
  • P. M. Maxton
  • J. R. Hill
  • D. S. Moore
  • H. K. McDowell
Part of the NATO ASI Series book series (NSSB, volume 243)


The normal modes arising from a simple linear model of a crystalline solid predict many important properties such as the specific heat, the sound velocity, and the Raman and infrared response. Such a model fails, however, to produce thermal expansion and finite thermal conductivity. The introduction of weak non-linear couplings between the normal modes immediately corrects these simpler problems, while preserving the usual phonon representation of the purely linear system as a useful first approximation for small phonon amplitudes. What we wish to consider here is the next step in the process, taken by keeping the weak non-linearities but introducing large phonon amplitudes. Putting aside, for the moment, the question of how to achieve the necessary amplitudes, we can consider the consequences if certain not unusual conditions obtain which put the phonon equation of motion in correspondence with the non-linear Schrodinger equation. We can then be guided by classical solutions of this equation which predict spontaneous symmetry breaking and vibrational localization. To focus our thoughts, we outline in physical terms the processes leading to the localization of vibrational energy. We use the insight gained to guide our choice of materials, and we describe the measurements we have made to begin the establishment of a rigourous connection between real solids and the theoretical constructs related to this problem.


Dispersion Curve Acoustic Phonon Molecular Crystal Nonlinear Coupling Acoustic Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    A.S. Davydov and N.K. Kislukha, Phys. Stat. Sol. (b) 59, 465 (1973); A.S. Davydov, J. Theor. Biol. 38, 559 (1973); Biology and Quantum Mechanics (Pergamon, New York, 1982).ADSCrossRefGoogle Scholar
  2. 2).
    S. Takeno, Prog Theor. Phys. 73 No. 4, 853 (1985).ADSCrossRefGoogle Scholar
  3. 3).
    D.W. Brown, B.J. West, and K. Lindenberg, Phys. Rev. A, 33 No. 6, 4110, (1986).MathSciNetADSCrossRefGoogle Scholar
  4. X. Wang, D.W. Brown, K. Lindenberg and B.J. West, Phys. Rev. A 37, 3557 (1988).ADSCrossRefGoogle Scholar
  5. 4).
    W. Rhodes, in press.Google Scholar
  6. 5).
    B. Mechtly and P.B. Shaw, Phys. Rev. B 38 No. 5, 3075 (1988).ADSCrossRefGoogle Scholar
  7. 6).
    P.S. Lomdahl and W.C. Kerr, Phys. Rev. Lett. 55, 1235 (1985).ADSCrossRefGoogle Scholar
  8. 7).
    D. Hochstrasser, F.G. Mertens, and H. Buttner, Phys. Rev. A 40 No. 5, 2602 (1989).ADSCrossRefGoogle Scholar
  9. 8).
    S. Yomosa, J. Phys. Soc. Jpn. 53, 3692 (1984); Phys. Rev. A 32, 1752 (1985).ADSCrossRefGoogle Scholar
  10. 9).
    H. Simpson, Jr. and R. E. Marsh, Acta. Cryst. 20, 550 (1966).CrossRefGoogle Scholar
  11. 10).
    The low temperature unit cell dimensions are from P. Vergimini, P. Maxton, and A. Migliori (unpublished), Data above 150K are from S. Forss, J. Raman Spec. 12 No. 3, 266 (1982).Google Scholar
  12. 11).
    T.J. Kosic, R. E. Cline Jr. and D.D. Dlott, Chem. Phys. Lett. 103 No. 2, 109 (1983).ADSCrossRefGoogle Scholar
  13. 12).
    P. Maxton, J. Eckert, G. Kwei, A. Migliori, M. Field, in preparation.Google Scholar
  14. 13).
    A. Migliori, P. Maxton, A. M. Clogston, E. Zirngiebl, and M. Lowe, Phys. Rev. B 38 No. 18, 13464 (1988).ADSCrossRefGoogle Scholar
  15. 14).
    Y. R. Shen, 1984, The Principles of Non-Linear Optics, New York, Wiley.Google Scholar
  16. 15).
    D. D. Dlott, Ann. Rev. Phys. Chem. 37, 157, (1986).ADSCrossRefGoogle Scholar
  17. 16).
    T. J. Kosic, R. E. Cline Jr and D. D. Dlott, J. Chem. Phys. 81, 4932 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. Migliori
    • 1
  • A. M. Clogston
    • 1
  • P. M. Maxton
    • 1
    • 2
  • J. R. Hill
    • 1
  • D. S. Moore
    • 1
  • H. K. McDowell
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.University of California at Los AngelesLos AngelesUSA

Personalised recommendations