Quantum Chemical Calculations of Molecular Parameters Defining Davydov Soliton Dynamics in Polypeptides

  • Brian M. Pierce
Part of the NATO ASI Series book series (NSSB, volume 243)


Ab-initio-SCF-MO theory is used to calculate the molecular parameters defining the dynamics of Davydov solitons arising from the excitation of either the amide-I or v(NH) vibration in a hydrogen-bonded polypeptide or polyamide chain. Both the split-valence 4-3 1G and STO-3G atomic orbital basis sets are utilized in this study, and a hydrogen-bonded, linear formamide dimer is employed as a model of the chain. The theoretical analysis of the linear dimer consists of calculating (1) equilibrium geometries and electronic charge distributions, (2) vibrational normal modes, (3) adiabatic and non-adiabatic potential energy curves as a function of hydrogen bond length, R(N-O), (4) electric dipole moment derivatives for the amide-I and v(NH) modes as functions of R(N-O), and (5) force constants and frequencies for the amide-I and v(NH) modes as functions of R(N-O). These calculations yield Davydov soliton parameters for the amide-I and v(NH) modes that compare well with the relevant experimental data. The v(NH) mode is calculated to be more strongly coupled to the hydrogen bond stretching vibration than is the amide-I mode. Theoretical treatments of the dynamics of Davydov solitons in polypeptides and polyamides should consider including the v(NH) mode and other modes involving the vibration of the N-H bond, as well as the amide-I mode.


Potential Energy Curve Equilibrium Geometry Hydrogen Bond Length Peptide Unit Intramolecular Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.E. Green, Science 181:583 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    D.E. Green, Ann. N.Y. Acad. Sci. 227:6 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    A.S. Davydov, Studia Biophysica 62:1 (1977).Google Scholar
  4. 4.
    A.S. Davydov, “Biology and Quantum Mechanics,” Pergamon, New York (1982); Sov. Phys. Usp. 25:898 (1983).Google Scholar
  5. 5.
    A.S. Davydov, A.A. Eremko, and A.I. Sergienko, Ukr. Fiz. Zh. (Russ. Ed.) 23:983 (1978).Google Scholar
  6. 6.
    A.C. Scott, Phys. Rev. A 26:578 (1982).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    L. Pauling, “The Nature of the Chemical Bond,” Cornell University, Ithaca (1960); R.E. Dickerson and I. Geis, “The Structure and Action of Proteins,” Benjamin/Cummings, Menlo Park (1969).Google Scholar
  8. 8.
    C. Sandorfy, in: “Hydrogen Bonds”, edited by P. Schuster, Springer, New York (1984).Google Scholar
  9. 9.
    G. Careri, U. Buontempo, F. Galluzzi, A.C. Scott, E. Gratton, and E. Shyamsunder, Phys. Rev. B 30:4689 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    A.C. Scott, private communication (1987).Google Scholar
  11. 11.
    H.J. Wasserman, R.R. Ryan, and S.P. Layne, Acta Cryst. C41:783 (1983).Google Scholar
  12. 12.
    A. Lautie’, F. Froment, and A. Novak, Spectroscopy Lett. 9:289 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    J. Bandekar and G. Zundel, Spectrochim. Acta, Part A 38:815 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    A.F. Lawrence, J.C. McDaniel, D.B. Chang, B.M. Pierce, and R.R. Birge, Phys. Rev. A 33:1188 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    See the papers in these Proceedings concerning temperature effects on Davydov solitons.Google Scholar
  16. 16.
    W.J. Hehre, L. Radom, P.v.R. Schleyer, and J.A. Pople, “Ab-Initio Molecular Orbital Theory,” Wiley, New York (1986).Google Scholar
  17. 17.
    H.F. Schaefer, “The Electronic Structure of Atoms and Molecules. A Survey of Rigorous Results,” Addison-Wesley, New York (1977).Google Scholar
  18. 18.
    V.A. Kuprievich and Z.G. Kudritskaya, Acad. Sci. Ukranian SSR, Inst. for Theor. Phys. Preprint ITP-82-63E (1982).Google Scholar
  19. 19.
    V.A. Kuprievich and Z.G. Kudritskaya, Acad. Sci. Ukranian SSR, Inst.for Theor. Phys. Preprint ITP-82-64E (1982).Google Scholar
  20. 20.
    N. Østergård, Master’s Thesis, The Technical University of Denmark, Lyngby, Denmark, 1988.Google Scholar
  21. 21.
    B.M. Pierce, A.F. Lawrence, and D.B. Chang, in:“Spectroscopy of Biological Molecules,” edited by A.J.P. Alix, L. Bernard, and M. Manfait, Wiley, New York (1985).Google Scholar
  22. 22.
    A.S. Davydov, “The Theory of Molecular Excitons”, McGraw-Hill, New York (1962).Google Scholar
  23. 23.
    T.C. Cheam and S. Krimm, Chem. Phys. Lett. 107:613 (1984).ADSCrossRefGoogle Scholar
  24. 24.
    See the papers in these Proceedings concerning theoretical studies of Davydov solitons in hydrogen-bonded, peptide or amide systems.Google Scholar
  25. 25.
    J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, J. Comput. Chem. 5:146 (1984).CrossRefGoogle Scholar
  26. 26.
    Y. Sugawara, Y. Hamada, A.Y. Hirakawa, M. Tsuboi, S. Kato, and K. Morokuma, Chem. Phys. Lett. 50:105 (1980).Google Scholar
  27. 27.
    E. Hirota, R. Sugisuki, CJ. Nielsen, and G.O. Sorensen, J. Chem. Phys. 49:251 (1974).Google Scholar
  28. 28.
    K. Itoh and T. Shimanouchi, J. Molec. Spectros. 42:86 (1972).ADSCrossRefGoogle Scholar
  29. 29.
    R. Taylor, O. Kennard, and W. Versichel, J. Am. Chem. Soc. 105:5761 (1983).CrossRefGoogle Scholar
  30. 30.
    M. Dreyfus and A. Pullman, Theo. Chim. Acta 19: 20 (1970).CrossRefGoogle Scholar
  31. 31.
    P. Hobza, F. Mulder, and C. Sandorfy, J. Am. Chem. Soc. 104:925 (1982).CrossRefGoogle Scholar
  32. 32.
    T. Ottersen, J. Molec. Struct. 26:365 (1975).ADSCrossRefGoogle Scholar
  33. 33.
    M.J. Wojcik, A.Y. Hirakawa, M. Tsuboi, S. Kato, and K. Morokuma, Chem. Phys. Lett. 100:523 (1983).ADSCrossRefGoogle Scholar
  34. 34.
    A.E. Reed, R.B. Weinstock, and F. Weinhold, J. Chem. Phys. 83:735 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    J.C. Evans, J. Chem. Phys. 22:1228 (1954); 31:1435 (1959).ADSCrossRefGoogle Scholar
  36. 36.
    S.T. King, J. Phys Chem. 75:405 (1971).CrossRefGoogle Scholar
  37. 37.
    B.M. Pierce, N. Østergård, P.L. Christiansen, and O. Faurskov-Nielsen, to be published.Google Scholar
  38. 38.
    M. Rasanen, J. Molec. Struct. 102:235 (1983).ADSCrossRefGoogle Scholar
  39. 39.
    T.C. Cheam and S. Krimm, Chem. Phys. Lett. 107:613 (1984).ADSCrossRefGoogle Scholar
  40. 40.
    T.C. Cheam and S. Krimm, J. Molec. Struct. 146:175 (1986).ADSCrossRefGoogle Scholar
  41. 41.
    J.F. Hinton and R.D. Harpool, J. Am. Chem. Soc. 99:349 (1977).CrossRefGoogle Scholar
  42. 42.
    A. Pullman, H. Berthod, C. Giessner-Prette, J.F. Hinton, D. Harpool, J. Am. Chem. Soc. 100:3991 (1978).CrossRefGoogle Scholar
  43. 43.
    A.T. Tu, “Raman Spectroscopy in Biology: Principles and Applications”, Wiley, New York, 1982.Google Scholar
  44. 44.
    See contribution by A. Giansanti in these Proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Brian M. Pierce
    • 1
  1. 1.Hughes Aircraft CompanyLong BeachUSA

Personalised recommendations