Interaction of an Extra Electron with Optical Phonons in Long Molecular Chains and Ionic Crystals

  • V. Z. Enol’skii
Part of the NATO ASI Series book series (NSSB, volume 243)


After Davydov pioneer paper [I] on the energy transfer in biological systems the attention of investigators was drawn to different problems of electron-phonon interaction in molecular chains [2, 3]. The effect of acoustic phonons with the dispersion law
$$ \Omega \left( k \right) = kV_{ac} $$
on the motion of an extra electron (and exciton) in a one dimensional molecular chain was studied by Davydov [4–6]. It was shown that the stable motion of electron (exciton) with velocities less than a constant group velocity Vac of a longtudinal sound is accompanied by a local chain deformation, and the motion of this collective deformation is described by a solitary wave which does not change its form and velocity. This wave, called as soliton, can travel only with the speed less than the sound velocity Vac.


Molecular Chain Optical Phonon Polarization Field Electron Motion Ionic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Davydov, Biology and Quantum Mechanics, Pergamon, Oxford (1982).Google Scholar
  2. 2.
    A. S. Scott, Dynamics of Davydov soliton, Phys.Rev. A 26:678 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    A. S. Scott, The vibrational structure of Davydov soliton, Phys, Scr. 25:651 (1982).ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    A. S. Davydov, The effect of electron-Dhonon interaction on the electron motion in one-dimensional molecular system, Teor. Mat. Fis., 40:408 (1979) (in Russian).Google Scholar
  5. 5.
    A. S. Davydcv, The soliton motion in one-dimensional molecular chain with regard of thermal oscillations, Zin. Exper. Teor. Fiz., 78:789 (1980) (in Russian).ADSGoogle Scholar
  6. 6.
    A. S. Davydov, Solitons, Bioenergetics and the mechanisms of muscle contraction, Intern. J. Quant. Chem., 16:5 (1979).CrossRefGoogle Scholar
  7. 7.
    J. Appel, Polarons, Sol. St. Phys., 21:1 (1968).CrossRefGoogle Scholar
  8. 8.
    A. S. Davydov, V. Z. Enol’skii, The theory of motion of an extra electron in a molecular chain with allowance for interaction with optical phonons, Zn. Exper. Teor. Fiz., 79:1888 (1980).Google Scholar
  9. 9.
    A. S. Davydov, V. Z. Enol’skii, Translation-invariant theory of strong particle-field coupling, Zn. Exper. Teor. Fiz., 81:1088 (1981).Google Scholar
  10. 10.
    A. S. Davydov, V. Z. Enol’skii, On the question of effective mass for Pekar polaron, zn. Exper. Teor. Fiz., 94:177 (1988).Google Scholar
  11. 11.
    I. E. Turner, V. E. Anderson, Ground state energy eigenvalues and eigenfunctions for an electron in electron-dipole field, Phys. Rev. 174:81 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    A. Nakamura Damping and modificatiom of exciton solitary waves, J. Phys. Soc. Jap. 42:1824 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    I. V. Simenog, On the asymptotics of stationary nonlinear Schrödinger equation, Teor. Mat. Fiz., 30:3 (1977).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. G. Litvak, A. M. Sergeev, On the one-dimensional collapse of plasma waves, Lett. Zn. Exper. Teor. Fiz., 27:549 (1978).Google Scholar
  15. 15.
    L. D. Landau, On the electron motion in crystal lattice, Phys. Zs. Sowiet., 3:664 (1933).zbMATHGoogle Scholar
  16. 16.
    L. D. Landau, S. I. Pekar, Polaron effective mass, Zn. Exper. Teor. Fiz., 18:419 (1948).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • V. Z. Enol’skii
    • 1
  1. 1.Institute of Metal PhysicsKiev-142USSR

Personalised recommendations