Advertisement

Soliton Dynamics in the Eilbeck-Lomdahl-Scott Model for Hydrogen-Bonded Polypeptides

  • Alexander V. Savin
  • Alexander V. Zolotaryuk
Part of the NATO ASI Series book series (NSSB, volume 243)

Abstract

The transfer of vibrational energy along quasi-one-dimensional molecular systems such as chains of hydrogen-bonded peptide groups (PG’s) by means of self-trapped states (solitary waves or solitons) was first suggested by Davydov and Kislukha1 in order to explain how the energy released by hydrolysis of adenosine triphosphate can be localized and moved along proteins providing important biological processes2, 3. The soliton formation in this model1,3 is due to the coupling of the high-frequency intramolecular C = 0 stretch mode (the amide-I excitation, with frequency about 1665 cm−1) in PG’s and the acoustic mode (the intermolecular relative displacement field) of PG’s with associated side groups through the dependence of the amide-I energy on the distances to neighbouring left and right molecules (PG’s). After the numerous theoretical studies3 on this acoustic-mode-coupled soliton theory, the experimental results performed by Careri and cowor-kers4 for crystalline acetanilide (ACN) became very important for the question of the existence of self-trapped localized states in quasi-one-dimensional molecular systems since the material ACN contains chains of hydrogen-bonded PG’s similar to protein molecules.

Keywords

Solitary Wave Soliton Solution Bose Statistic Soliton Dynamic Numerous Theoretical Studies3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Davydov and N. I. Kislukha, Solitary excitations in one-dimensional molecular chains, Phys. Status Solidi B 59:465 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    A. S. Davydov, “Biology and Quantum Mechanics”, Pergamon, Oxford (1982).Google Scholar
  3. 3.
    A. S. Davydov, “Solitons in Molecular Systems”, Reidel, Boston (1985), and references therein.Google Scholar
  4. 4.
    G. Careri, U. Buontempo, F. Galluzzi, A. C. Scott, E. Gratton, and E. Shyamsunder, Spectroscopic evidence for Davydov-like solitons in acetanilide, Phys.Rev.B 30:4689 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, Soliton structure in crystalline acetanilide, Phys.Rev.B 30:4703 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    P. S. Lomdahl and W. C. Kerr, Finite temperature effects on models of hydrogen-bonded polypeptides, in: “Physics of Many Particle Systems”, A. S. Davydov, ed., Naukova Dumka, Kiev, N12 (1987).Google Scholar
  7. 7.
    S. Takeno, Vibron solitons and soliton-induced infrared spectra of crystalline acetanilide, Prog.Theor.Phys. 75:1 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    T. Holstein, Studies of polaron motion. Part I. The molecular crystal model, Ann. Phys. 8:325 (1959).ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    L. S. Brizhik and A. S. Davydov, Pairing of electrosoli-tons in soft molecular chains. Fiz. Nizk. Temp. (Soviet Low Temp. Phys.,) 10:748 (1984).Google Scholar
  10. 10.
    D. Lj. Mirjanic, M. M. Marinković, G. Knežević, and B. S. Tošić, Two-particle solitary waves, Phys. Status Solidi B 121:589 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    Lj. Ristovski, G. S. Davidović-Ristovski, and V. Ristić, Bisolitons in a molecular polymer chain, Phys. Status Solidi B 136:615 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Zolotaryuk, Many-particle Davydov solitons, in: “Physics of Many Particle Systems”, A. S. Davydov, ed., Naukova Dumka, Kiev, N13 (1988).Google Scholar
  13. 13.
    A. S. Davydov and V. Z. Enol’skii, Motion of an excess electron in a molecular chain when interaction with optical phonons is taken into account, Zh. Eksp. Teor, Fiz. (Sov. Phys.-JETP) 79:1888 (1980).Google Scholar
  14. 14.
    A. V. Zolotaryuk and A. V. Savin, Solitons in molecular chains with intramolecular nonlinear interactions, Physica D, in press.Google Scholar
  15. 15.
    A. S. Davydov and A. A. Eremko, Radiative lifetime of solitons in molecular crystals, Ukr. Fiz. Zh. (Ukrainian Physical Journal) 22: 881 (1977).Google Scholar
  16. 16.
    A. S. Davydov, Solitons in molecular systems, Phys. Scripta 20:387 (1979).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    X. Wang, D. W. Brown, and K. Lindenberg, Vibron solitons, Plays, Rev. B 39:5366 (1989); see also related references therein.ADSCrossRefGoogle Scholar
  18. 18.
    W. C. Kerr and P. S. Lomdahl, Quantum-mechanical derivation of the equations of motion for Davydov solitons, Phys. Rev. B 35:3629 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    A. S. Davydov and A. V. Zolotaryuk, Solitons in molecular systems with nonlinear nearest-neighbour interactions, Phys.Lett.A 94:49 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    A. S. Davydov and A. V. Zolotaryuk, Electrons and excitons in nonlinear molecular chains, Phys. Scripta 28:249 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Alexander V. Savin
    • 1
  • Alexander V. Zolotaryuk
    • 2
  1. 1.Institute for Physico-Technical ProblemsMoscowUSSR
  2. 2.Institute for Theoretical PhysicsAcademy of Sciences of the Ukrainian SSRKievUSSR

Personalised recommendations