Cytochrome P-450 Reductase and Cytochrome b5 in Cytochrome P-450 Catalysis

  • Julian A. Peterson
  • Russell A. Prough


As the readers of this monograph should be aware, the monooxygenase reaction catalyzed by cytochrome P-450 requires the input of two electrons1,2:
In mammalian systems these two electrons are derived from NADPH; in the soluble system isolated from the bacterium Pseudomonas putida, NADH is used as the external source of electrons. A schematic representation of the two different types of electron transfer chains which deliver electrons from the reduced pyridine nucleotides to P-450 is shown in Fig. 1. The system, here referred to as Type I, is found embedded in the membranous endoplasmic reticulum of most eukaryotic cell types, while the second general class, Type II, is found in mitochondria and bacteria. The most completely described P-450 system, which is not membrane-bound, is associated with camphor metabolism in P. putida.3 The Type I electron transport chain is composed of a complex flavoprotein which has both FAD and FMN as prosthetic groups.4 FAD serves as the initial electron acceptor from NADPH, while the FMN serves to reduce the P-450.5 Later in this review, we will discuss the involvement of cytochrome b 5 as a possible component of this electron transport chain. In Type II systems, the reduced pyridine nucleotide first reduces an FAD-containing reductase which subsequently transfers electrons one at a time to a 2Fe,2S iron—sulfur protein.


Liver Microsome Microsomal Cytochrome Reduce Pyridine Nucleotide Hepatic Microsomal Cytochrome Liver Microsomal Cytochrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mason, H. S., Fowlks, W. L., and Peterson, E., 1955, Oxygen transfer and electron transport by the phenolase complex, J. Am. Chem. Soc. 77: 2914–2915.Google Scholar
  2. 2.
    Hayaishi, O., Katagiri, M., and Rothberg, S., 1955, Mechanism of the pyrocatechase reaction, J. Am. Chem. Soc. 77: 5450–5451.Google Scholar
  3. 3.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Anno. Rev. Biochem. 49: 315–356.Google Scholar
  4. 4.
    lyanagi, T., and Mason, H. S., 1973, Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase, Biochemistry 12: 2297–2308.Google Scholar
  5. 5.
    Vermilion, J. L., and Coon, M. J., 1978, Identification of the high and low potential flavins of liver microsomal NADPH-cytochrome P-450 reductase, J. Biol. Chem. 253: 8812–8819.PubMedGoogle Scholar
  6. 6.
    Lambeth, J. D., and Kamin, H., 1976, Properties of the complexes of reduced enzyme with NADP* and NADPH, J. Biol. Chem. 251: 4299–4306.PubMedGoogle Scholar
  7. 7.
    Estabrook, R. W., Hildebrandt, A., Remmer, H., Schenkman, J. B., Rosenthal, O., and Cooper, D. Y., 1968, Role of cytochrome P-450 in microsomal mixed-function oxidation, in: Biochem. Sauerst., Collog. Ges. Biol. Chem., 19th ( B. Hess and H. Staudinger, eds.), Springer-Verlag, Berlin, pp. 142–177.Google Scholar
  8. 8.
    Tsai, R., Yu, C.-A., Gunsalus, I. C., Peisach, J., Blumberg, W., Orme-Johnson, W. H., and Beinert, H., 1970, Spin-state changes in cytochrome P-450ca,„ on binding of specific substrates, Proc.Natl. Acad. Sci. USA 66: 1157–1163.PubMedGoogle Scholar
  9. 9.
    Peterson, J. A., 1971, Camphor binding by Pseudomonas putida cytochrome P-450, Arch. Biochem. Biophys. 144: 678–693.Google Scholar
  10. 10.
    Peterson, J. A., White, R. E., Yasukochi, Y., Coomes, M. L., O’Keeffe, D. H., Ebel, R. E., Masters, B. S. S., Ballou, D. P., and Coon, M. J., 1976, Evidence that purified cytochrome P-450LM is a one electron acceptor, J. Biol. Chem. 251: 4010–4016.PubMedGoogle Scholar
  11. 11.
    Estabrook, R. W., Hildebrandt, A. G. Baron, J., Netter, K. J., and Leibman, K., 1971, A new spectral intermediate associated with cytochrome P-450 function in liver microsomes, Biochem. Biophys. Res. Commun. 42: 132 - I39.Google Scholar
  12. 12.
    Ishimura, Y., Ullrich, V., and Peterson, J. A., 1971, Oxygenated cytochrome P-450 and its possible role in enzymic hydroxylation, Biochem. Biophys. Res. Commun. 42: 140–146.PubMedGoogle Scholar
  13. 13.
    Peterson, J. A., Ishimura, Y., and Griffin, B. W., 1972, Pseudomonas putida cytochrome P-450: Characterization of an oxygenated form of the hemoprotein, Arch. Biochem. Biophys. 149: 197–208.Google Scholar
  14. 14.
    DePierre, J. W., and Ernster, L., 1977, Enzyme topology of intracellular membranes, Annu. Rev. Biochem. 46: 201–262.PubMedGoogle Scholar
  15. 15.
    Pearse, B. M. F., and Bretscher, M. S., 1981, Membrane recycling by coated vesicles, Annu. Rev. Biochem. 50: 85–101.PubMedGoogle Scholar
  16. 16.
    Peterson, J. A., O’Keeffe, D. H., Werringloer, J., Ebel, R. E., and Estabrook, R. W., 1978, Patches and pockets: The microenvironments of a membrane bound hemeprotein, in: Microenvironments and Metabolic Compartmentation ( P. A. Srere and R. W. Estabrook, eds.), Academic Press, New York, pp. 433–450.Google Scholar
  17. 17.
    Horecker, B. C., 1950, Triphosphopyridine nucleotide-cytochrome c reductase in liver, J. Biol. Chem. 183: 593–605.Google Scholar
  18. 18.
    Coon, M. J., Strobel, H. W., and Boyer, R. F., 1973, On the mechanism of hydroxylation reactions catalyzed by cytochrome P-450, Drug Metab. Dispos. 1: 92–97.PubMedGoogle Scholar
  19. 19.
    Raftell, M., and Orrenius, S., 1970, Preparation of antisera against cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes, Biochim. Biophys. Acta 233: 358–365.Google Scholar
  20. 20.
    Masters, B. S. S., Baron, J., Taylor, W. E., Isaacson, E. L., and LoSpalluto, J., 1971, Immunochemical studies on electron transport chains involving cytochrome P-450. I. Effects of antibodies to pig liver microsomal reduced triphosphopyridine nucleotide-cytochrome c reductase and the non-heure iron protein from bovine adrenocortical mitochrondria, J. Biol. Chem. 246: 4143–4150.PubMedGoogle Scholar
  21. 21.
    Oshino, N., and Omura, T., 1973, lmmunochemicat evidence for the participation of cytochrome b5 in microsomal stearyl-CoA denaturation reaction, Arch. Biochem. Biophys. 157: 395–404.Google Scholar
  22. 22.
    Yasukochi, Y., and Masters, B. S. S. 1976, Some properties of a detergent-solubilized NADPH-cytochrome c (cytochrome P-450) reductase purified by biospecific affinity chromatography, J. Biol. Chem. 251: 5337–5344.PubMedGoogle Scholar
  23. 23.
    Gum, J. R., and Strobel, H. W., 1979, Isolation of the membrane-binding peptide of NADPH-cytochrome P-450 reductase: Characterization of the peptide and its role in the interaction of reductase with cytochrome P-450, J. Biol. Chem. 254: 4177–4185.PubMedGoogle Scholar
  24. 24.
    Black, S. D., French, J. S., Williams, C. H., Jr., and Coon, M. J., 1979, Role of a hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P-450 reductase in complex formation with P-450LM. Biochem. Biophys. Res. Commun. 91: 1528–1535.PubMedGoogle Scholar
  25. 25.
    Yasukochi, Y., Peterson, J. A., and Masters, B. S. S., 1979, NADPH-cytochrome c(P450 reductase): Spectrophotometric and stopped-flow kinetic studies on the formation of reduced flavoprotein intermediates, J. Biol. Chem. 254: 7079–7104.Google Scholar
  26. 26.
    Vermilion, J. L., and Coon, M. J., 1978, Purified liver microsomal NADPH-cytochrome P-450 reductase: Spectral characterization of oxidation-reduction states, J. Biol. Chem. 253: 2694–2704.PubMedGoogle Scholar
  27. 27.
    Omura, T., Sanders, E., Estabrook, R. W., Cooper, D. Y. and Rosenthal, O., 1966, Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase, Arch. Biochem. Biophys. 177: 660–673.Google Scholar
  28. 28.
    Chu, J.-W. and Kimura, T., 1973, Adrenal steroid hydroxylases: Complex formation of the hydroxylase components, J. Biol. Chem. 248: 2089–2094.PubMedGoogle Scholar
  29. 29.
    Huang, J. J., and Kimura, T., 1973, Studies on adrenal steroid hydroxylases: Oxidation-reduction properties of adrenal iron-sulfur protein (adrenodoxin), Biochemistry 12: 406–409.PubMedGoogle Scholar
  30. 30.
    Estabrook, R. W., Baron, J., Peterson, J., and Ishimura, Y., 1972, Oxygenated cytochrome P-450 as an intermediate in hydroxylation reactions, in: Biological Hydroxylation Mechanisms ( G. S. Boyd and R. M. S. Smellie, eds.), Academic Press, New York, pp. 159–185.Google Scholar
  31. 31.
    Lambeth, J. D., and Kamin, H., 1977, Adrenodoxin reductase and adrenodoxin: Mechanisms of reduction of ferricyanide and cytochrome c, J. Biol. Chem. 252: 2908–2917.PubMedGoogle Scholar
  32. 32.
    Lambeth, J. D., Geren, L. M., and Millett, F. 1984, Adrenodoxin interaction with adrenodoxin reductase and cytochrome P-450„c: Cross-linking of protein complexes and effects of adrenodoxin modification by EDC, J. Biol. Chem. 259: 10025–10029.PubMedGoogle Scholar
  33. 33.
    Roome, P. W., Jr., Philley, J. C., and Peterson, J. A., 1983, Purification and properties of putidaredoxin reductase, J. Biol. Chem. 258: 2593–2598.PubMedGoogle Scholar
  34. 34.
    Roome, P. W., Jr., 1985, Mechanism of and physical properties of putidaredoxin reductase, Ph.D. dissertation, The University of Texas Health Science Center at Dallas, Southwestern Graduate School of Biomedical Sciences.Google Scholar
  35. 35.
    Tanaka, M., Hanu, M., Yasunobu, K. T., Dus, K., and Gunsalus, I. C., 1974, Amino acid sequence of putidaredoxin, an iron-sulfur protein from Pseudomonas putida, J. Biol. Chem. 249: 3689–3701.PubMedGoogle Scholar
  36. 36.
    Lambeth J. D., Seybert, D. W., and Kamin, H., 1979, Ionic effects on adrenal steroidogenic electron transport: The role of adrenodoxin as an electron shuttle, J. Biol. Chem. 254: 7255–7264.PubMedGoogle Scholar
  37. 37.
    Sligar, S., 1976, Coupling of spin, substrate, and redox equilibria in cytochrome P-450, Biochemistry 15: 5399–5406.PubMedGoogle Scholar
  38. 38.
    Waterman, M. R., and Mason, H. S., 1972, Redox properties of liver cytochrome P450, Arch. Biochem. Biophys. 150: 57–63.PubMedGoogle Scholar
  39. 39.
    Guengerich, F. P., Ballou, D. P., and Coon, M. J., 1975, Purified liver microsomal cytochrome P-450: Electron-accepting properties and oxidation-reduction potential, J. Biol. Chem. 250: 7405–7414.PubMedGoogle Scholar
  40. 40.
    Backstrom, D., Ingelman-Sundberg, M., and Ehrenberg, A., 1983, Oxidation-reduction potential of soluble and membrane-bound rabbit liver microsomal cytochrome P450LM2, Acta Chem. Scand. 37: 891–894.Google Scholar
  41. 41.
    Pompon, D., and Coon, M. J., 1984, On the mechanism of action of cytochrome P450: Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5, J. Biol. Chem. 259: 15377–15385.PubMedGoogle Scholar
  42. 42.
    Brewer, C. B., and Peterson, J. A., 1985, Single turnover studies with oxy-P-450cam, Fed. Proc. 44: 1609.Google Scholar
  43. 43.
    Hintz, M. J., and Peterson, J. A., 1981, The kinetics of reduction of cytochrome P450cam by reduced putidaredoxin, J. Biol. Chem. 256: 6721–6728.PubMedGoogle Scholar
  44. 44.
    Hintz, M. J., Mock, D. M., Peterson, L. L., Tuttle, K., and Peterson, J. A., 1982, Equilibrium and kinetic studies of the interaction of cytochrome P-450cam and putidaredoxin, J. Biol. Chem. 257: 14324–14332.PubMedGoogle Scholar
  45. 45.
    Gigon, P. L., Gram, T. E., and Gillette, J. R., 1968, Effect of drug substrates on the reduction of hepatic microsomal cytochrome P-450 by NADPH, Biochem. Biophys. Res. Commun. 31: 558–562.PubMedGoogle Scholar
  46. 46.
    Holtzman, J. L., and Carr, M. L., 1972, The temperature dependence of the components of the hepatic microsomal mixed-function oxidases, Arch. Biochem. Biophys. 150: 227–234.PubMedGoogle Scholar
  47. 47.
    Peterson, J. A., and Mock, D. M., 1975, Dual wavelength stopped-flow spectrophotometry: computer acquisition and analysis, Anal. Biochem. 68: 545–553.PubMedGoogle Scholar
  48. 48.
    Peterson, J. A., Ebel, R. E., and O’Keeffe, D. H., 1978, Computerized stopped-flow spectrophotometric measurement of cytochrome P-450 reductase, Methods Enzymol. 52: 221–226.PubMedGoogle Scholar
  49. 49.
    Peterson, J. A., Ebel, R. E., O’Keeffe, D. H., Matsubara, T., and Estabrook, R. W., 1976, Temperature dependence of cytochrome P-450 Reduction: A model for NADPHcytochrome P-450 reductase: cytochrome P-450 interaction, J. Biol. Chem. 251: 40104016.Google Scholar
  50. 50.
    Hiromi, K., 1979, in: Kinetics of Fast Enzyme Reactions, Halsted Press, New York, p. 247.Google Scholar
  51. 51.
    Matsubara, T., Baron, J., Peterson, L. L., and Peterson, J. A., 1976, NADPH-cytochrome P-450 reductase, Arch. Biochem. Biophys. 172: 463–469.PubMedGoogle Scholar
  52. 52.
    Franklin, M. R., ard Estabrook, R. W., 1971, On the inhibitory action of mersalyl on microsomal drug oxidation: A rigid organization of the electron transport chain, Arch. Biochem. Biophys. 143: 318–329.PubMedGoogle Scholar
  53. 53.
    Backes, W. L., Sligar, S. G., and Schenkman, J. B., 1980, Cytochrome P-450 reduction exhibits burst kinetics, Biochem. Biophys. Res. Commun. 97: 860–867.PubMedGoogle Scholar
  54. 54.
    Diehl, H., Schadelin, J., and Ullrich, V., 1970, Studies on the kinetics of cytochrome P-450 reduction in rat liver microsomes, Hoppe-Seylers Z. Physiol. Chem. 351: 1359 1371.Google Scholar
  55. 55.
    Cinti, D. L., Sligar, S. G., Gibson, G. G., and Schenkman, J. B., 1979, Temperature-dependent spin equilibrium of microsomal and solubilized cytochrome P-450 from rat liver, Biochemistry 18: 36–42.PubMedGoogle Scholar
  56. 56.
    Ristau, O., Rein, H., Janig, G.-R., and Ruckpaul, K., 1978, Quantitative analysis of the spin equilibrium of cytochrome P-4501 M2 fraction from rabbit liver microsomes, Biochim. Biophys. Acta 536: 226–234.PubMedGoogle Scholar
  57. 57.
    Ebel, R. E., O’Keeffe, D. H., and Peterson, J. A., 1978, Substrate binding to hepatic microsomal cytochrome P-450: Influence of the microsomal membrane, J. Biol. Chem. 253: 3888–3897.PubMedGoogle Scholar
  58. 58.
    Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C., 1982, Rotation of cytochrome P-450. I. Investigations of protein—protein interactions of cytochrome P-450 in phospholipid vesicles and liver microsomes, J. Biol. Chem. 257: 7023–7029.PubMedGoogle Scholar
  59. 59.
    Baskin, L. S., and Yang, C. S., 1982, Cross-linking studies of the protein topography of rat liver microsomes, Biochim. Biophys. Acta 684: 263–271.PubMedGoogle Scholar
  60. 60.
    Miwa, G. T., West, S. B., Huang, M.-T., and Lu, A. Y. H., 1979, Studies on the association of cytochrome P-450 and NADPH-cytochrome c reductase during catalysis in a reconstituted hydroxylating system, J. Biol. Chem. 254: 5695–5700.PubMedGoogle Scholar
  61. 61.
    French, J. S., Guengerich, F. P., and Coon, M. J., 1980, Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system, J. Biol. Chem. 255: 4112–4119.PubMedGoogle Scholar
  62. 62.
    Oprian, D. D., Vatsis, K. P., and Coon, M. J., 1974, Kinetics of reduction of cytochrome P-450LM4 in a reconstituted liver microsomal enzyme system, J. Biol. Chem. 254: 8895–8902.Google Scholar
  63. 63.
    Cinti, D. L., Sligar, S. G., Gibson, G. G., and Schenkman, J. B. 1979, Temperature-dependent spin equilibrium of microsomal and solubilized cytochrome P-450 from rat liver, Biochemistry 18: 36–42.PubMedGoogle Scholar
  64. 64.
    Taniguchi, H., Imai, Y., Iyanagi, T., and Sato, R., 1979, Interaction between NADPHcytochrome P-450 reductase and cytochrome P-450 in the membrane of phosphatidylcholine vesicles, Biochim. Biophys. Acta 550: 341–356.PubMedGoogle Scholar
  65. 65.
    Oshino, N., 1980, Cytochrome b5 and its physiological significance, in: Hepatic Cytochrome P-450 Monooxygenase System (J. B. Schenkman and D. Kupfer, eds.), Pergamon Press, Elmsford, N. Y., pp. 407–447.Google Scholar
  66. 66.
    Oshino, N., Imai, Y., and Sato, R., 1971, Function of cytochrome b5 in fatty acid desaturation by rat liver microsomes, J. Biochem. 69: 155–167.PubMedGoogle Scholar
  67. 67.
    Keyes, S. R., Alfano, J. A., Jansson, I., and Cinti, D. L., 1979, Rat liver microsomal elongation of fatty acids: Possible involvement of cytochrome b5, J. Biol. Chen. 254: 7778–7784.Google Scholar
  68. 68.
    Reddy, V. V., Kupfer, D., and Caspi, E., 1977, Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes: Evidence for the participation of cytochrome b5, J. Biol. Chem. 252: 2797–2801.PubMedGoogle Scholar
  69. 69.
    Pugh, E. L., and Kates, M., 1977, Direct desaturation of eicosatrienoyl lecithin to arachidonyl lecithin by rat liver microsomes, J. Biol. Chem. 252: 68–73.PubMedGoogle Scholar
  70. 70.
    Paltauf, F., Prough, R. A., Masters, B. S. S., and Johnston, J. M., 1974, Evidence for the participation of cytochrome b5 in plasmalogen synthesis, J. Biol. Chem. 249: 2661–2662.Google Scholar
  71. 7I.
    Nagao, M., lshibishi, T., Okayasu, T., and Imai, Y., 1983, Possible involvement of NADPH-cytochrome P450 reductase and cytochrome b5 on ß-ketostearoyl-CoA reduction in microsomal fatty acid chain elongation supported by NADPH, FEBS Lett. 155: 11–14.PubMedGoogle Scholar
  72. 72.
    Fukushima, H., Grinstead, G. F., and Gaylor, J. L., 1981, Total enzymic synthesis of cholesterol from lanosterol: Cytochrome b5-dependence of 4-methyl sterol oxidase, J. Biol. Chem. 256: 4822–4826.PubMedGoogle Scholar
  73. 73.
    Passon, P. G., Reed, D. W., and Hultquist, D. E., 1972, Soluble cytochrome b5 from human erythrocytes, Biochim. Biophys. Acta 275: 51–61.PubMedGoogle Scholar
  74. 74.
    Kuma, F., Prough, R. A., and Masters, B. S. S., 1976, Studies on methemoglobin reductase: Immunochemical similarity of soluble methemoglobin reductase and cytochrome b5 of human erythrocytes with NADH-cytochrome b5 reductase and cytochrome b5 of rat liver microsomes, Arch. Biochem. Biophys. 172: 600–607.PubMedGoogle Scholar
  75. 75.
    Oshino, N., and Sato, R., 1971, Stimulation by phenols of the reoxidation of microsomal bound cytochrome b5 and its implication to fatty acid desaturation, J. Biochem. 69: 169–180.PubMedGoogle Scholar
  76. 76.
    Strittmatter, P., Machuga, E. T., and Roth, G. J., 1982, Reduced pyridine nucleotides and cytochrome b5 as electron donors for prostaglandin synthetase reconstituted in dimyristyl phosphatidylcholine vesicles, J. Biol. Chem. 257: 11883–11886.PubMedGoogle Scholar
  77. 77.
    Kadlubar, F. F., McKee, E. M., and Ziegler, D. M., 1973, Reduced pyridine nucleotide-dependent N-hydroxyamine oxidase and reductase activities of hepatic microsomes, Arch. Biochem. Biophys. 156: 46–57.PubMedGoogle Scholar
  78. 78.
    Kadlubar, F. F., and Ziegler, D. M., 1974, Properties of a NADH-dependent N-hydroxyamine reductase isolated from pig liver microsomes, Arch. Biochem. Biophys. 169: 83–92.Google Scholar
  79. 79.
    Sanborn, R. C., and Williams, C. M., 1950, The cytochrome system in the cecropia silkworm with special reference to the properties of a new component, J. Gen. Physiol. 33: 579–588.PubMedGoogle Scholar
  80. 80.
    Chance, B., and Williams, G. R., 1955, Kinetics of cytochrome b5 in rat liver microsomes, J. Biol. Chem. 209: 945–951.Google Scholar
  81. 81.
    Ito, A., and Sato, R., 1968, Purification by means of detergents and properties of cytochrome b5 from liver microsomes, J. Biol. Chem. 243: 4922–4923.PubMedGoogle Scholar
  82. 82.
    Spatz, L., and Strittmatter, P., 1971, A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues, Proc. Natl. Acad. Sci. USA 68: 1042–1046.PubMedGoogle Scholar
  83. 83.
    Strittmatter, P., and Velick, S. F., 1956, The isolation and properties of microsomal cytochrome, J. Biol. Chem. 221: 253–264.PubMedGoogle Scholar
  84. 84.
    Strittmatter, P., and Velick, S. F., 1957, The purification and properties of microsomal cytochrome reductase, J. Biol. Chem. 228: 785–799.PubMedGoogle Scholar
  85. 85.
    Enoch, H. G., and Strittmatter, P., 1979, Cytochrome b5 reduction by NADPH-cytochrome P-450 reductase, J. Biol. Chem. 254: 8976–8981.PubMedGoogle Scholar
  86. 86.
    Oshino, N., Imai, Y., and Sato, R., 1966, Electron-transfer mechanism associated with fatty acid desaturation catalyzed by liver microsomes, Biochem. Biophys. Acta 128: 1328.Google Scholar
  87. 87.
    Fukushima, K., and Sato, R., 1973, Purification and characterization of cytochrome b5-like hemoprotein associated with outer mitochondrial membrane of rat liver, J. Biochem. 74: 161–173.PubMedGoogle Scholar
  88. 88.
    Kuwahara, S., Okada, Y., and Omura, T., 1978, Evidence for molecular identity of microsomal and mitochondrial NADH-cytochrome b5 reductase of rat liver, J. Biochem. 83: 1049–1059.PubMedGoogle Scholar
  89. 89.
    Prough, R. A., Imblum, R. L., and Kouri, R. A., 1976, NADH-cytochrome c reductase activity in cultured human lymphocytes: Similarity to the liver microsomal NADHcytochrome b5 and cytochrome b5 enzyme system, Arch. Biochem. Biophys. 176: 119126.Google Scholar
  90. 90.
    Cohen, B. S., and Estabrook, R. W., 1971, Microsomal electron transport reactions. I. Interaction of reduced triphosphopyridine nucleotide during the oxidative demethylation of aminopyrine and cytochrome b5 reduction, Arch. Biochem. Biophys. 143: 3745.Google Scholar
  91. 91.
    Cohen, B. S., and Estabrook, R. W., 1971, Microsomal electron transport reactions. II. The use of reduced triphosphopyridine nucleotide and/or reduced diphosphopyridine nucleotide for the oxidative N-demethylation of aminopyrine and other drug substrates, Arch. Biochem. Biophys. 143: 46–53.PubMedGoogle Scholar
  92. 92.
    Cohen, B. S., and Estabrook, R. W., 1971, Microsomal electron transport reactions. III. Cooperative interactions between reduced diphosphopyridine nucleotide and reduced triphosphopyridine nucleotide linked reactions, Arch. Biochem. Biophys. 143: 54–65.PubMedGoogle Scholar
  93. 93.
    Prough, R. A., and Burke, M. D., 1975, The role of NADPH-cytochrome P-450 reductase in microsomal hydroxylation reactions, Arch. Biochem. Biophys. 170: 160–168.PubMedGoogle Scholar
  94. 94.
    Werringloer, J., 1976, The formation of hydrogen peroxide during hepatic microsomal electron transport reactions, in: Microsomes and Drug Oxidation ( V. Ullrich, I. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, N.Y., pp. 261–268.Google Scholar
  95. 95.
    Hildebrandt, A., and Estabrook, R. W., 1971, Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions, Arch. Biochem. Biophys. 143, 66–79.PubMedGoogle Scholar
  96. 96.
    Kuriyama, Y., Omura, T., Siekevitz, P., and Palade, G. E., 1969, Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes, J. Biol. Chem. 244: 2017–2023.PubMedGoogle Scholar
  97. 97.
    Mannering, G. J., Kuwahara, S., and Omura, T., 1974, Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADPH-dependent mono-oxidase system of hepatic microsomes, Biochem. Biophys. Res. Commun. 57: 476–481.PubMedGoogle Scholar
  98. 98.
    Prough, R. A., and Masters, B. S. S., 1976, Kinetic and spectral studies on the reduction of liver microsomal NADPH-cytochrome c reductase by NADH, in: Flavins and Flavoproteins ( T. P. Singer, ed.), Elsevier, Amsterdam, pp. 668–673.Google Scholar
  99. 99.
    Noshiro, M., and Omura, T., 1978, Immunochemical study on the electron pathway from NADH to cytochrome P-450 of liver microsomes, J. Biochem. 83: 61–77.PubMedGoogle Scholar
  100. 100.
    Sasame, H. A., Thorgeirsson, S. S., Mitchell, J. R., Gillette, J. R., 1974, The possible involvement of cytochrome b5 in the oxidation of lauric acid by microsomes from kidney cortex and liver of rats, Life Sci. 14: 35–46.PubMedGoogle Scholar
  101. 101.
    Lu, A. Y. H., and Levin, W., 1974, Liver microsomal electron transport systems. III. Involvement of cytochrome b5 in the NADPH-supported cytochrome P-450-dependent hydroxylation of chlorobenzene, Biochem. Biophys. Res. Commun. 61: 1348–1355.PubMedGoogle Scholar
  102. 102.
    West, S. B., and Lu, A. Y. H., 1977, Liver microsomal electron transport systems: Properties of a reconstituted, NADH-mediated benzo(a)pyrene hydroxylation system, Arch. Biochem. Biophys. 182: 369–378.PubMedGoogle Scholar
  103. 103.
    Imai, Y., and Sato, R., 1977, The roles of cytochrome b5 in a reconstituted N-demethylase system containing cytochrome P-450, Biochem. Biophys. Res. Commun. 75: 420–426.PubMedGoogle Scholar
  104. 104.
    Imai, Y., 1981, The roles of cytochrome b5 in reconstituted monooxygenase systems containing various forms of hepatic microsomal cytochrome P-450, J. Biochem. 89: 35 1362.Google Scholar
  105. 105.
    Miki, N., Sugiyama, T., and Yamano, T., 1980, Purification and characterization of cytochrome P-450 with high affinity for cytochrome b5, J. Biochem. 88: 307–316.PubMedGoogle Scholar
  106. 106.
    Sugiyama, T., Miki, N., and Yamano, T., 1980, NADH- and NADPH-dependent reconstituted p-nitroanisole 0-demethylation system containing cytochrome P-450 with high affinity for cytochrome b5, J. Biochem. 87: 1457–1467.PubMedGoogle Scholar
  107. 107.
    Sugiyama, T., Miki, N., Miyake, Y., and Yamano, T., 1982, Interaction and electron transfer between cytochrome P-450 in the reconstituted p-nitroanisole 0-demethylase system, J. Biochem. 92: 1793–1803.PubMedGoogle Scholar
  108. 108.
    Morgan, E. T., and Coon, M. J., 1984, Effects of cytochrome b5 on cytochrome P450-catalyzed reactions: Studies with manganese-substituted cytochrome b5, Drug Metab. Dispos. 2: 358–364.Google Scholar
  109. 109.
    Chiang, J. Y. L., 1981, Interaction of purified microsomal cytochrome P-450 with cytochrome b5, Arch. Biochem. Biophys. 211: 662–673.PubMedGoogle Scholar
  110. 110.
    Bosterling, B., and Trudell, J. R., 1982, Association of cytochrome b5 and cytochrome P-450 reductase with cytochrome P-450 in the membrane of reconstituted vesicles, J. Biot Chem. 257: 4783–4787.Google Scholar
  111. 111.
    Werringloer, J., Kawano, S., and Kuthan, H., 1982, Regulation of the cyclic function of liver microsomal cytochrome P-450: On the role of cytochrome b5, in: Cytochrome P-450: Biochemistry, Biophysics and Environmental Implications ( E. Hietanen, E. Laitinen, and O. Hanninen, eds.), Elsevier, Amsterdam, pp. 509–512.Google Scholar
  112. 112.
    Noshiro, M., Ullrich, V., and Omura, T., 1981, Cytochrome b5 as electron donor for oxy-cytochrome P-450, Eur. J. Biochem. 116: 521–526.PubMedGoogle Scholar
  113. 113.
    Werringloer, J., and Kawano, S., 1980, The control of the cyclic function of liver microsomal cytochrome P-450: “Counterpoise”-regulation of the electron transfer reactions required for the activation of molecular oxygen, in: Biochemistry, Biophysics and Regulation of Cytochrome P-450 (J.-A. Gustafsson, J. Carlstedt-Duke, A. Mode, and J. Rafter, eds. ), pp. 359–362.Google Scholar
  114. 114.
    Werringloer, J., 1982, “Counterpoise”-regulation of the steady-state concentration of my-cytochrome P-450: A definition of the rate-limiting step in the catalytic cycle of liver microsomal cytochrome P-450, in: Microsomes, Drug Oxidations, and Drug Toxicity (R. Sato and R. Kato, eds.), Japan Scientific Societies Press, Tokyo, pp. 171–178.Google Scholar
  115. 115.
    Bonfils, C., Balny, C., and Maurel, P., 1981, Direct evidence for electron transfer from ferrous cytochrome b5 to the oxyferrous intermediate of liver microsomal cytochrome P-450 LM2, J. Biol. Chem. 256: 9457–9465.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Julian A. Peterson
    • 1
  • Russell A. Prough
    • 1
  1. 1.Department of BiochemistryUniversity of Texas Health Sciences CenterDallasUSA

Personalised recommendations