Comparison of the Peroxidase Activity of Hemeproteins and Cytochrome P-450

  • Lawrence J. Marnett
  • Paul Weller
  • John R. Battista

Abstract

Peroxidases are enzymes that catalyze the oxidation of inorganic and organic substrates at the expense of a hydroperoxide—H2O2, alkyl hydroperoxides, or acyl hydroperoxides1. The actual function of the peroxidase may be to
(1)
reduce a hydroperoxide or oxidize a particular substrate and, therefore, they are quite versatile and widespread. Most peroxidases contain ferriprotoporphyrin IX as their prosthetic group and “peroxidase activity” is a common characteristic of many hemeproteins and simple heme complexes.2–4 Table I lists some of the better-characterized peroxidases, their properties, and functions. The discovery that cytochrome P-450 exhibits peroxidase activity and utilizes hydroperoxides to catalyze aliphatic hydroxylation and olefin epoxidation in the absence of NADPH and NADPH-cytochrome P-450 reductase provided a new perspective on its mechanisms.5–7 Much of the present understanding of the catalytic cycle of P-450 evolved from experiments designed to compare its peroxidase activity to those of classical peroxidases such as horseradish peroxidase (HRP). This chapter attempts to compare and contrast the principal features of the interaction of peroxidases with hydroperoxides. It is not intended to be comprehensive because, in the words of the author of a previous review “it is unlikely that any reviewer would profess an adequate expertise in the disciplines, ranging from genetics to chemical physics, which a comprehensive discussion would require.”8 The reader can consult any of a number of excellent reviews2,8–C18 or leading references cited herein.

Keywords

Peroxyl Radical High Oxidation State Styrene Oxide Cumene Hydroperoxide Alkoxyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saunders, B. C., Holmes-Siedel, A. G., and Stark, B. P., 1964, Peroxidases, Butter-worths, London.Google Scholar
  2. 2.
    Dunford, H. B., and Stillman, J. S., 1976, On the function and mechanism of action of peroxidases, Coord. Chem. Rev. 19: 187–251.Google Scholar
  3. 3.
    Jones, P., Mantle, D., Davies, D. M., and Kelly, H. C., 1977, Hydroperoxidase activities of ferrihemes: Herne analogues of peroxidase intermediates, Biochemistry 16: 3974–3978.PubMedGoogle Scholar
  4. 4.
    Portsmouth, D., and Beal, E. A., 1971, The peroxidase activity of deuterohemin, Eur. J. Biochem. 19: 479–487.PubMedGoogle Scholar
  5. 5.
    Hrycay, E. G., and O’Brien, P. J., 1972, Cytochrome P-450 as a microsomal peroxidase in steroid hydroperoxide reduction, Arch. Biochem. Biophys. 153: 480–494.PubMedGoogle Scholar
  6. 6.
    Kadlubar, F. F., Morton, K. C., and Ziegler, D. M., 1973, Microsomal-catalyzed hydroperoxide-dependent C-oxidation of amines, Biochem. Biophys. Res. Commun. 54: 1255–1260.PubMedGoogle Scholar
  7. 7.
    Rahimtula, A. D., and O’Brien, P. J., 1974, Hydroperoxide catalyzed liver microsomal aromatic hydroxylation reactions involving cytochrome P-450, Biochem. Biophys. Res. Commun. 60: 440–447.PubMedGoogle Scholar
  8. 8.
    Jones, P., and Wilson, 1., 1978, Catalase and iron complexes with catalase-like properties, in: Metal Ions in Biological Systems ( H. Segel, ed.), Dekker, New York, pp. 185–240.Google Scholar
  9. 9.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Anna. Rev. Biochem. 49: 315–356.Google Scholar
  10. 10.
    Coon, M. J., and White, R. E., 1980, Cytochrome P-450, a versatile catalyst in monooxygenation reactions, in: Dioxygen Binding and Activation by Metal Complexes ( T. G. Spiro, ed.), Wiley, New York, pp. 73–123.Google Scholar
  11. 11.
    Saunders, B. C., 1973, Peroxidase and catalase, in: Inorganic Biochemistry, Volumes 1 and 2 ( G. L. Eichorn, ed.), Elsevier, Amsterdam, pp. 988–1021.Google Scholar
  12. 12.
    Keilin, D., 1966, The History of Cell Respiration and Cytochrome, Cambridge University Press, London.Google Scholar
  13. 13.
    Schonbaum, G. R., and Chance, B., 1976, Catalase, in: The Enzymes, Volume 13 ( P. Boyer, ed.), Academic Press, New York, pp. 363–408.Google Scholar
  14. 14.
    Dunford, H. B., 1982, Peroxidases, Adv. Inorg. Biochem. 4: 41–68.Google Scholar
  15. 15.
    Yonetani, T., 1976, Cytochrome c peroxidase, in: The Enzymes, Volume 13 ( P. Boyer, ed.), Academic Press, New York, pp. 345–362.Google Scholar
  16. 16.
    Yamazaki, I., 1974, Peroxidase, in: Molecular Mechanisms of Oxygen Activation ( O. Hayaishi, ed.), Academic Press, New York, pp. 535–558.Google Scholar
  17. 17.
    Morrison, M., and Schonbaum, G. R., 1976, Peroxidase-catalyzed halogenation, Annu. Rev. Biochem 45: 861–888.PubMedGoogle Scholar
  18. 18.
    Chance, B., Powers, L., Ching, Y., Poulos, T., Schonbaum, G. R., Yamazaki, I., and Paul, K. G., 1984, X-ray absorption studies of intermediates in peroxidase activity, Arch. Biochem. Biophys. 235: 596–611.PubMedGoogle Scholar
  19. 19.
    Schonbaum, G. R., and Lo, S., 1972, Interaction of peroxidases with aromatic peracids and alkyl peroxides: Product analyses, J. Biol. Chem. 247: 3353–3360.PubMedGoogle Scholar
  20. 20.
    Hewson, W. D., and Dunford, H. B., 1976, Stoichiometry of the reaction between horseradish peroxidase and p-cresol, J. Biol. Chem. 251: 6043–6052.PubMedGoogle Scholar
  21. 21.
    Kedderis, G. L., Koop, D. R., and Hollenberg, P. F., 1980, N-Demethylation reactions catalyzed by chloroperoxidase, J. Biol. Chem. 255: 10174–10182.PubMedGoogle Scholar
  22. 22.
    Kedderis, G. L., and Hollenberg, P. F., 1983, Characterization of the N-demethylations catalyzed by horseradish peroxidase, J. Biol. Chem. 258: 8129–8138.PubMedGoogle Scholar
  23. 23.
    Portoghese, P. S., Svanborg, K., and Samuelsson, B., 1975, Oxidation of oxyphenylbutazone by sheep vesicular gland microsomes and lipoxygenase, Biochem. Biophys. Res. Commun. 63: 748–755.Google Scholar
  24. 24.
    Marnett, L. J., Bienkowski, M. J., Pagels, W. R., and Reed, G. A., 1980, Mechanism of xenobiotic cooxygenation coupled to prostaglandin H2 biosynthesis, in: Advances in Prostaglandin and Thromboxane Research, Volume 6 ( B. Samuelsson, P. W. Ram-well, and R. Paoletti, eds.), Raven Press, New York, pp. 149–151.Google Scholar
  25. 25.
    Roman, R., and Dunford, H. B., 1972, pH dependence on the oxidation of iodide by compound I of horseradish peroxidase, Biochemistry 11: 2076–2082.Google Scholar
  26. 26.
    Bjorksten, F., 1970, The horseradish peroxidase-catalyzed oxidation of iodide: Outline of the mechanism, Biochim. Biophys. Acta 212: 396–406.PubMedGoogle Scholar
  27. 27.
    Roman, R., and Dunford, H. B., 1973, Studies on horseradish peroxidase. XII. A kinetic study on the oxidation of sulfite and nitrite by compounds I and II, Can. J. Chem. 51: 588–596.Google Scholar
  28. 28.
    Arcaiso, T., Miyoshi, K., and Yamazaki, I., 1976, Mechanism of electron transport from sulfite to horseradish peroxidase compounds, Biochemistry 15: 3059–3063.Google Scholar
  29. 29.
    George, P., 1952, Redox reactions of catalase intermediate compounds and a new “peroxidase” role for catalase, Biochem. J. 52: X IX.Google Scholar
  30. 30.
    Stern, K. G., 1936, On the mechanism of enzyme action: A study of the decomposition of monoethyl hydrogen peroxide by catalase and of an intermediate enzyme substrate compound, J. Biol. Chem. 114: 473–494.Google Scholar
  31. 31.
    Thomas, J. A., Morris, D. A., and Hager, L. P., 1970, Chloroperoxidase. VIII. Formation of peroxide and halide complexes and their relation to the mechanism of the halogenation reaction, J. Biol. Chem. 245: 3135–3142.PubMedGoogle Scholar
  32. 32.
    Courtin, F., Deme, D., Verion, A., Michot, J. L., Pommier, J., and Nunez, J., 1982, The role of lactoperoxidase-H202 compounds in the catalysis of thyroglobulin iodination and thyroid hormone synthesis, Eur. J. Biochem. 124: 603–609.PubMedGoogle Scholar
  33. 33.
    Deme, D., Pommier, J., and Nunez, J., 1978, Specificity of thyroid hormone synthesis: The role of thyroid peroxidase, Biochim. Biophys. Acta 540: 73–82.PubMedGoogle Scholar
  34. 34.
    Dunford, H. B., and Ralston, I. M., 1983, On the mechanism of iodination of tyrosine, Biochem. Biophys. Res. Commun. 116: 639–643.PubMedGoogle Scholar
  35. 35.
    Ohki, S., Ogino, N., Yamamato, S., and Hayaishi, O., 1979, Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes, J. Biol. Chem. 254: 829–836.PubMedGoogle Scholar
  36. 36.
    Theorell, H., 1941, Crystalline peroxidase, Enzymologia 10: 250–252.Google Scholar
  37. 37.
    Chance, B., 1943, The kinetics of the enzyme-substrate compound of peroxidase, J. Biol. Chem. 151: 553–577.Google Scholar
  38. 38.
    George, P., 1953, Intermediate compound formation with peroxidase and strong oxidizing agents, J. Biol. Chem. 201: 413–426.PubMedGoogle Scholar
  39. 39.
    Dolphin, D., and Felton, R. H., 1974, The biochemical significance of porphyrin rr cation radicals, Acc. Chem. Res. 7: 26–32.Google Scholar
  40. 40.
    LaMar, G. N., de Ropp, J. S., Smith, K. M., and Langry, K. C., 1981, Proton nuclear magnetic resonance investigation of the electronic structure of compound I of horseradish peroxidase, J. Biol. Chem. 256: 237–243.Google Scholar
  41. 41.
    Schulz, C. E., Rutter, R., Sage, J. T., DeBrunner, P. G., and Hager, L. P., 1984, Mossbauer and electron paramagnetic resonance studies of horseradish peroxidase and its catalytic intermediates, Biochemistry 23: 4743–4754.PubMedGoogle Scholar
  42. 42.
    Felton, R. H., Romans, A. Y., Yu, N. T., and Schonbaum, G. R., 1976, Laser Raman spectra of oxidized hydroperoxidases, Biochim. Biophys. Acta 434: 82–89.PubMedGoogle Scholar
  43. 43.
    Dunford, H. B., and Nadezhdin, A. D., 1982, On the past eight years of peroxidase research, in: Oxidases and Related Redox Systems ( T. E. King, H. S. Mason, and M. Morrison, eds.), Pergamon Press, Elmsford, N.Y., pp. 653–670.Google Scholar
  44. 44.
    George, P., 1952, The specific reactions of iron in some hemoproteins, Adv. Catal. 4: 367–428.Google Scholar
  45. 45.
    George, P., 1953, The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. 1. Titration with reducing agents, Biochem. J. 54: 267–276.PubMedGoogle Scholar
  46. 46.
    George, P., 1953, The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. 2. Formation and decomposition, Biochem. J. 55: 220–230.PubMedGoogle Scholar
  47. 47.
    Hayashi, Y., and Yamazaki, I., 1979, The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C, J. Biol. Chem. 254: 9101–9106.PubMedGoogle Scholar
  48. 48.
    Schonbaum, G. R., and Chance, B., 1976, Catalase, in: The Enzymes, Volume 13 ( P. Boyer, ed.), Academic Press, New York, pp. 363–408.Google Scholar
  49. 49.
    Browett, W. R., and Stillman, M. J., 1981, Evidence for heme Tr cation radical species in compound I of horseradish peroxidase and catalase, Biochim. Biophys. Acta 660: 17.Google Scholar
  50. 50.
    Araiso, T., Ronnenberg, M., Dunford, H. B., and Ellfolk, N., 1980, The formation of the primary compound from hydrogen peroxide and Pseudomonas cytochrome c peroxidase, FEBS Leu. 118: 99–102.Google Scholar
  51. 51.
    Chance, B., 1949, The properties of the enzyme substrate compounds of horseradish and lactoperoxidase, Science 109: 204–208.PubMedGoogle Scholar
  52. 52.
    Maguire, R. J., Dunford, H. B., and Morrison, M., 1971, The kinetics of the formation of the primary lactoperoxidase—hydrogen peroxide compound, Can. J. Biochem. 49: 1165–1171.PubMedGoogle Scholar
  53. 53.
    Palcic, M. M., Rutter, R., Araiso, T., Hager, L. P., and Dunford, H. B., 1980, Spectrum of chloroperoxidase compound I, Biochem. Biophys. Res. Commun. 94: 1123–1127.PubMedGoogle Scholar
  54. 54.
    Harrison, J. R., Araiso, T., Palcic, M. M., and Dunford, H. B., 1980, Compound I of myeloperoxidase, Biochem. Biophys. Res Commun. 94: 34–40.PubMedGoogle Scholar
  55. 55.
    George, P., and Irvine, D. H., 1954, Reaction of metmyoglobin with strong oxidizing agents, Biochem. J. 58: 188–195.PubMedGoogle Scholar
  56. 56.
    King, N. K., and Winfield, M. E., 1963, The mechanism of myoglobin oxidation, J. Biol. Chem. 238: 1520–1528.PubMedGoogle Scholar
  57. 57.
    Blake, R. C., II, and Coon, M. J., 1980, On the mechanism of action of cytochrome P-450: Spectral intermediates in the reaction of P-450LM2 with peroxy compounds, J. Biol. Chem. 255: 4100–4111.PubMedGoogle Scholar
  58. 58.
    Wagner, G. C., Palcic, M. M., and Dunford, H. B., 1983, Absorption spectra of cytochrome P-450cam in the reaction with peroxy acids, FEBS Lett. 156: 244–248.PubMedGoogle Scholar
  59. 59.
    Rutter, R., Valentine, M., Hendrich, M. P., Hager, L. P., and Debrunner, P. G., 1983, Chemical nature of the porphyrin IT cation radical in horseradish peroxidase compound I, Biochemistry 22: 4769–4774.PubMedGoogle Scholar
  60. 60.
    Gouterman, M., 1961, Spectra of porphyrins, J. Mol. Spectrosc. 6: 138–163.Google Scholar
  61. 61.
    Yonetani, T., 1965, Stoichiometry between enzyme, H2O2, and ferrocytochrome c, and enzymic determination of extinction coefficients of cytochrome c, J. Biol. Chem. 240: 4509–4514.PubMedGoogle Scholar
  62. 62.
    Yonetani, T., 1966, Cytochrome c peroxidase. IV. A comparison of peroxide-induced complexes of horseradish and cytochrome c peroxidases, J. Biol. Chem. 241: 2562–2571.PubMedGoogle Scholar
  63. 63.
    Yonetani, T., Schleyer, H., and Ehraenberg, A., 1966, Cytochrome c peroxidase. VII. Electron paramagnetic resonance absorptions of the enzyme and complex ES in dissolved and crystalline forms, J. Biol. Chem. 241: 3240–3243.PubMedGoogle Scholar
  64. 64.
    Coulson, A. F. W., Erman, J. E., and Yonetani, T., 1971, Cytochrome c peroxidase, XVII. Stoichiometry and mechanism of the reaction of compound ES with donors, J. Biol. Chem. 246: 9117–9124.Google Scholar
  65. 65.
    Van der Ouderaa, F. J., Buytenhek, M., Nugteren, D. H., and Van Dorp, D. A., 1977, Purification and characterization of prostaglandin endoperoxide synthetase from sheep vesicular glands, Biochim. Biophys. Acta 487: 315–331.PubMedGoogle Scholar
  66. 66.
    Hemler, M. E., and Lands, W. E. M., 1980, Protection of cyclooxygenase activity during heme-induced destabilization, Arch. Biochem. Biophys. 201: 586–593.PubMedGoogle Scholar
  67. 67.
    Weller, P., Hollenberg, P., and Marnett, L. J., manuscript in preparation.Google Scholar
  68. 68.
    Schultz, J., and Schmuckler, H. W., 1964, Myeloperoxidase of the leukocyte of normal human blood. II. Isolation, spectrophotometry, and amino acid analysis, Biochemistry 3: 1234–1238.PubMedGoogle Scholar
  69. 69.
    Harrison, J. E., and Schultz, J., 1978, Myeloperoxidase: Confirmation and nature of heme-binding inequivalence. Resolution of a carbonyl-substituted heure, Biochim. Biophys. Acta 536: 341–349.PubMedGoogle Scholar
  70. 70.
    Ellfolk, N., and Soininen, R., 1971, Pseudomonas cytochrome c peroxidase. III. The size and shape of the enzyme molecule, Acta Chem. Scand. 25: 1535–1540.Google Scholar
  71. 71.
    Soininen, R., Ellfolk, N., and Kalkkinen, N., 1973, Pseudomonas cytochrome c peroxidase. IX. Molecular weight of the enzyme in dodecyl sulfate—polyacrylamide gel electrophoresis, Acta Chem. Scand. 27: 1106–1107.Google Scholar
  72. 72.
    Ellfolk, N., Ronnberg, M., Aasa, R., Andreasson, L. E., and Vanngard, T., 1983, Properties and function of the two hemes in Pseudomonas cytochrome c peroxidase, Biochim. Biophys. Acta 743: 23–30.PubMedGoogle Scholar
  73. 73.
    Ronnberg, M., Araiso, T., Ellfolk, N., and Dunford, H. B., 1981, The catalytic mechanism of Pseudomonas cytochrome c peroxidase, Arch. Biochem. Biophys. 207: 197–204.PubMedGoogle Scholar
  74. 74.
    Ronnberg, M., Lambeir, A.-M., Ellfolk, N., and Dunford, H. B., 1985, A rapid-scan spectrometric and stopped-flow study of compound I and compound II of Pseudomonas cytochrome c peroxidase, Arch. Biochem. Biophys. 236: 714–719.PubMedGoogle Scholar
  75. 75.
    George, P., and Irvine, D. H., 1952, Reaction between metmyoglobin and hydrogen peroxide, Biochem. J. 52: 511–517.PubMedGoogle Scholar
  76. 76.
    George, P., and Irvine, D. H., 1955, A possible structure for the higher oxidation state of metmyoglobin, Biochem. J. 60: 596–604.PubMedGoogle Scholar
  77. 77.
    George, P., and Irvine, D. H., 1956, A kinetic study of the reaction between ferrimyoglobin and hydrogen peroxide, J. Colloid Sci. 11: 327–339.Google Scholar
  78. 78.
    Blake, R. C., II, and Coon, M. J., 1981, On the mechanism of action of cytochrome P-450. Role of peroxy spectral intermediates in substrate hydroxylation, J. Biol. Chem. 256: 5755–5763.PubMedGoogle Scholar
  79. 79.
    Hasinoff, B. B., and Dunford, H. B., 1970, The kinetics of oxidation of ferrocyanide by horseradish peroxidase compounds I and II, Biochemistry 9: 4930–4939.PubMedGoogle Scholar
  80. 80.
    Cotton, M. L., and Dunford, H. B., 1973, Studies on horseradish peroxidase. XI. On the nature of compounds I and II as determined from the kinetics of the oxidation of ferrocyanide, Can. J. Chem. 51: 582–587.Google Scholar
  81. 81.
    Dunford, H. B., and Cotton, M. L., 1975, Kinetics of the oxidation of p-aminobenzoic acid catalyzed by horseradish peroxidase compounds I and II, J. Biol. Chem. 250: 2920–2932.PubMedGoogle Scholar
  82. 82.
    Santimone, M., 1975, The mechanism of ferrocytochrome c oxidation by horseradish isoperoxidâse, Biochimie 57: 91–96.PubMedGoogle Scholar
  83. 83.
    Critchlow, J. E., and Dunford, H. B., 1972, Studies on horseradish peroxidase. IX. Kinetics of the oxidation of p-cresol by compound II, J. Biol. Chem. 247: 8703–8713.Google Scholar
  84. 84.
    Morishima, I., and Ogawa, S., 1979, Nuclear magnetic resonance studies on hemoproteins, J. Biol. Chem. 254: 2814–2820.PubMedGoogle Scholar
  85. 85.
    Leigh, J. S., Maltempo, M. M., Ohlsson, P. I., and Paul, K. G., 1975, Optical, NMR, and EPR properties of horseradish peroxidase and its donor complexes, FEBS Lett. 51: 304–308.PubMedGoogle Scholar
  86. 86.
    Schejter, A., Laner, A., and Epstein, N., 1976, Binding of hydrogen donors to horseradish peroxidase: A spectroscopic study, Arch. Biochem. Biophys. 174: 36–44.PubMedGoogle Scholar
  87. 87.
    Burns, P. S., Williams, R. J. P., and Wright, P. E., 1975, Conformational studies of peroxidase-substrate complexes: Structure of indolepropionic acid-horseradish peroxidase complex, J. Chem. Soc. Chem. Commun. 1975: 795–7967.Google Scholar
  88. 88.
    Critchlow, J. E., and Dunford, H. B., 1972, The use of transition state acid dissociation constants in pH-dependent enzyme kinetics, J. Theor. Biol. 37: 307–320.PubMedGoogle Scholar
  89. 89.
    Dunford, H. B., and Araiso, T., 1979, Horseradish peroxidase. XXXVI. On the difference between peroxidase and metmyoglobin, Biochem. Biophys. Res. Commun. 89: 764–768.PubMedGoogle Scholar
  90. 90.
    Jones, P., and Dunford, H. B., 1977, On the mechanism of compound I formation from peroxidases and catalases, J. Theor. Biol. 69: 457–470.PubMedGoogle Scholar
  91. 91.
    Yamada, H., and Yamazaki, I., 1974, Proton balance in conversions between five oxidation-reduction states of horseradish peroxidase, Arch. Biochem. Biophys. 165: 728–738.PubMedGoogle Scholar
  92. 92.
    Dolman, D., Newell, G. A., Thurlow, M. D., and Dunford, H. B., 1975, A kinetic study of the reaction of horseradish peroxidase with hydrogen peroxide, Can. J. Biochem. 53: 495–501.PubMedGoogle Scholar
  93. 93.
    Dunford, H. B., and Alberty, R. A., 1967, The kinetics of fluoride binding by ferric horseradish peroxidase, Biochemistry 6: 447–451.PubMedGoogle Scholar
  94. 94.
    Chance, B., 1949, The enzyme—substrate compounds of horseradish peroxidase and peroxides. II. Kinetics of formation and decomposition of the primary and secondary complexes, Arch. Biochem. Biophys. 22: 224–252.Google Scholar
  95. 95.
    Brill, A. S., 1966, Peroxidases and catalase, in: Comprehensive Biochemistry, Volume 14 ( M. Florkin and E. H. Stotz, eds.), Elsevier, Amsterdam, pp. 447–479.Google Scholar
  96. 96.
    Dunford, H. B., Hewson, W. D., and Steiner, H., 1978, Horseradish peroxidase. XIX. Reactions in water and deuterium oxide: Cyanide binding, compound I formation and reactions of compound I and II with ferrocyanide, Can. J. Chem. 56: 2844–2852.Google Scholar
  97. 97.
    Hubbard, C. D., Dunford, H. B., and Hewson, W. D., 1975, Horseradish peroxidase. XVII. Reactions of compounds I and II with p-aminobenzoic acid in deuterium oxide, Can. J. Chem. 53: 1563–1569.Google Scholar
  98. 98.
    Roman, R., and Dunford, H. B., 1973, Studies on horseradish peroxidase. XII. A kinetic study of the oxidation of sulfite and nitrite by compounds I and II, Can J. Chem. 51: 588–596.Google Scholar
  99. 99.
    Ralston, I., and Dunford, H. B., 1978, Horseradish peroxidase. XXXII. pH dependence of the oxidation of L-(—)-tyrosine by compound I, Can. J. Biochem. 56: 1115–1119.PubMedGoogle Scholar
  100. 100.
    McCarthy, M.-B., and White, R. E., 1983, Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate, J. Biol. Chem. 258: 9153–9158.PubMedGoogle Scholar
  101. 101.
    Nordblom, G. D., White, R. E., and Coon, M. J., 1976, Studies on hydroperoxidedependent substrate hydroxylation by purified liver microsomal cytochrome P-450, Arch. Biochem. Biophys. 175: 524–533.PubMedGoogle Scholar
  102. 102.
    White, R. E., Sligar, S. G., and Coon, M. J., 1980, Evidence for a homolytic mechanism of peroxide oxygen—oxygen bond cleavage during substrate hydroxylation by cytochrome P-450, J. Biol. Chem. 255: 11108–11111.PubMedGoogle Scholar
  103. 103.
    Hiatt, R., 1971, Hydroperoxides, in: Organic Peroxides, Volume 2 ( D. Swern, ed.), Wiley—Interscience, New York, pp. 1–152.Google Scholar
  104. 104.
    Gardner, H. W., and Plattner, R. D., 1984, Linoleate hydroperoxides are cleaved heterolytically into aldehydes by Lewis acid aprotic solvents, Lipids 19: 294–299.Google Scholar
  105. 105.
    Marnett, L. J., Siedlik, P. H., and Fung, L. W-M., 1982, Oxidation of phenidone and BW755c by prostaglandin endoperoxide synthetase, J. Biol. Chem. 257: 6957–6964.PubMedGoogle Scholar
  106. 106.
    Lee, W. E., and Miller, D. W., 1966, The oxidation of pyrazolidone developing agents, Photogr. Sci. Eng. 10: 192–201.Google Scholar
  107. 107.
    Lasker, J. M., Sivarajah, R., Mason, R. P., Kalyanaraman, B., Abou-Donia, M. B., and Eling, T. E., 1981, A free radical mechanism of prostaglandin synthase-dependent aminopyrine demethylation, J. Biol. Chem. 256: 7764–7767.PubMedGoogle Scholar
  108. 108.
    Egan, R. W., Gale, P. H., Vanden Heuvel, W. J. A., Baptista, E. M., and Kuehl, F. A., 1980, Mechanism of oxygen transfer by prostaglandin hydroperoxidase, J. Biol. Chem. 255: 323–326.PubMedGoogle Scholar
  109. 109.
    Egan, R. W., Gale, P. H., Baptista, E. M., Kennicott, K. L., Vanden Heuvel, W. J. A., Walker, R. W., Fagerness, P. E., and Kuehl, F. A., 1981, Oxidation reactions by prostaglandin cyclooxygenase-hydroperoxidase, J. Biol Chem. 256: 7352–7361.PubMedGoogle Scholar
  110. 110.
    Watanabe, Y., Iyanagi, T., and Oae, S., 1982, One electron transfer mechanism in the enzymatic oxygenation of sulfoxide to sulfone promoted by a reconstituted system with purified cytochrome P-450, Tetrahedron Lett. 23: 533–536.Google Scholar
  111. 111.
    Ishimaru, A., and Yamazaki, I., 1977, Hydroperoxide-dependent hydroxylation involving “H2O2-reducible hemoprotein” in microsomes of pea seeds, J. Biol. Chem. 252: 6118–6124.PubMedGoogle Scholar
  112. 112.
    Blee, E., Casida, J. E., and Durst, F., 1984, Oxidation metabolism of xenobiotics in higher plants: Sulfoxidation of mesurol by soybean cotyledon microsomes, in: Ninth European Workshop on Drug Metabolism, Abstracts, p. 208.Google Scholar
  113. 113.
    Rahimtula, A. D., O’Brien, P. J., Seifried, H. E., and Jerina, D. M., 1978, The mechanism of action of cytochrome P-450: Occurrence of the ‘NIH shift’ during hydroperoxide-dependent aromatic hydroxylations, Eur. J. Biochem. 89: 133–141.PubMedGoogle Scholar
  114. 114.
    Guengerich, F. P., and McDonald, T. A., 1984, Chemical mechanisms of catalysis by cytochromes P-450: A unified view, Acc. Chem. Res. 17: 9–16.Google Scholar
  115. 115.
    Burns, J. J., Rose, R. K., Goodwin, S., Reichtal, J., Horning, E. C., and Brodie, B. B., 1955, The metabolic fate of phenylbutazone (Butazolidine) in man, J. Pharmacol. 113: 481–489.Google Scholar
  116. 116.
    Marnett, L. J., 1984, Hydroperoxide-dependent oxidations during prostaglandin biosynthesis, in: Free Radicals in Biology, Volume 6 ( W. A. Pryor, ed.), Academic Press, New York, pp. 63–94.Google Scholar
  117. 117.
    Marnett, L. J., and Reed, G. A., 1979, Peroxidatic oxidation of benzo[a]pyrene during prostaglandin biosynthesis, Biochemistry 18: 2923–2929.PubMedGoogle Scholar
  118. 118.
    Nastainczyk, W., Schuhn, D., and Ullrich, V., 1984, Spectral intermediates of prostaglandin hydroperoxidase, Eur. J. Biochem. 144: 381–385.PubMedGoogle Scholar
  119. 119.
    Marnett, L. J., and Eling, T. E., 1983, Cooxidation during prostaglandin biosynthesis: A pathway for the metabolic activation of xenobiotics, in: Reviews in Biochemical Toxicology, Volume 5 ( E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), Elsevier/ North-Holland, Amsterdam, pp. 135–172.Google Scholar
  120. 120.
    Marnett, L. J., Bienkowski, M. J., and Pagels, W. R., 1979, Oxygen 18 investigation of prostaglandin synthetase-dependent co-oxidation of diphenylisobenzofuran, J. Biol. Chem. 254: 5077–5082.PubMedGoogle Scholar
  121. 121.
    Marnett, L. J., Johnson, J. T., and Bienkowski, M. J., 1979, Arachidonic acid-dependent metabolism of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by ram seminal vesicles. FEBS Lett. 106: 13–16.PubMedGoogle Scholar
  122. 122.
    Marnett, L. J., and Bienkowski, M. J., 1980, Hydroperoxide-dependent oxygenation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by ram seminal vesicle microsomes: Source of the oxygen, Biochem. Biophys. Res. Commun. 96: 639–647.PubMedGoogle Scholar
  123. 123.
    Marnett, L. J., Reed, G. A., and Johnson, J. T., 1977, Prostaglandin synthetase dependent benzo[a]pyrene oxidation: Products of the oxidation and inhibition of their formation by antioxidants, Biochem. Biophys. Res. Commun. 79: 569–576.PubMedGoogle Scholar
  124. 124.
    Dix, T. A., and Marnett, L. J., 1981, Free radical epoxidation of 7,8-dihydroxy-7,8dihydrobenzo[a]pyrene by hematin and polyunsaturated fatty acid hydroperoxides, J. Am. Chem. Soc. 103: 6744–6746.Google Scholar
  125. 125.
    Dix, T. A., and Marnett, L. J., 1983, Hematin-catalyzed rearrangement of hydroperoxy-linoleic acid to epoxy alcbhols via an oxygen-rebound, J. Am. Chem. Soc.. 105: 7001–7002.Google Scholar
  126. 126.
    Dix, T. A., Fontana, R., Panthani, A., and Marnett, L. J., 1985, Hematin catalyzed epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by polyunsaturated fatty acid hydroperoxide, J. Biol. Chem. 260: 5358–5365.PubMedGoogle Scholar
  127. 127.
    Dix, T. A., and Marnett, L. J., 1985, Conversion of linoleic acid hydroperoxide to hydroxy, keto, epoxy hydroxy, and trihydroxy fatty acids by hematin, J. Biol. Chem. 260: 5351–5357.PubMedGoogle Scholar
  128. 128.
    Gardner, H. W., Weisleder, D., and Kleinman, R., 1978, Formation of trans-12,13epoxy-9-hydroperoxy-trans-10-octadecadienoic acid from 13-L-hydroperoxy-cis-9-trans-1 l-octadecadienoic acid catalyzed by either soybean extract or cysteine-FeCl3, Lipids 13: 246–252.Google Scholar
  129. 129.
    Hamberg, M., 1975, Decomposition of unsaturated fatty acid hydroperoxides by hemoglobin-structures of major products of 13–1.-hydroperoxy-9,11-octadecadienoic acid, Lipids 10: 87–92.PubMedGoogle Scholar
  130. 130.
    Dix, T. A., and Marnett, L. J., 1983, Metabolism of polycyclic aromatic hydrocarbon derivatives to ultimate carcinogens during lipid peroxidation, Science 221: 77–79.PubMedGoogle Scholar
  131. 131.
    Mahoney, L. R., Johnson, M. D., Korcek, S., Marnett, L. J., and Reed, G. A., 1982, Inhibition of aldehyde oxidation by polycyclic aromatic hydrocarbons, in: Abstracts of Papers, 184th American Chemical Society Meeting, Division of Organic Chemistry, No. 30, American Chemical Society, Washington, D.C., p. 30.Google Scholar
  132. 132.
    Reed, C. A., Brooks, E. A., and Eling, T. A., 1984, Phenylbutazone-dependent epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene—A new mechanism of prostaglandin H synthase-catalyzed oxidations, J. Biol. Chem. 259: 5591–5595.PubMedGoogle Scholar
  133. 133.
    Ortiz de Montellano, P. R., and Catalano, C. E., 1985, Epoxidation of styrene by hemoglobin and myoglobin: Transfer of oxidizing equivalents to the protein surface, J. Biol. Chem. 260: 9265–9271.PubMedGoogle Scholar
  134. 134.
    Thakker, D. R., Yagi, H., Akagi, H., Koreeda, M., Lu, A. Y. H., Levin, W., Wood, A. W., Conney, A. H., and Jerina, D. M., 1977, Metabolism of benzo[a]pyrene VI: Stereo-selective metabolism of benzo[a]pyrene 7,8 dihydrodiol to diol epoxides, Chem. Biol. Interact. 16: 281–300.PubMedGoogle Scholar
  135. 135.
    Panthananickal, A., and Marnett, L. J., 1981, Arachidonic acid-dependent metabolism of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene to polyguanylic acid-binding derivatives, Chem. Biol. Interact. 33: 239–252.PubMedGoogle Scholar
  136. 136.
    Dix, T. A., and Marnett, L. J., 1984, Detection of the metabolism of polycyclic aromatic hydrocarbon derivatives to ultimate carcinogens during lipid peroxidation, Methods Enzymol. 105: 347–352.PubMedGoogle Scholar
  137. 137.
    Dix, T. A., 1983, The mechanism of the fatty acid hydroperoxide dependent epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, Ph.D. dissertation, Wayne State UniversityGoogle Scholar
  138. 138.
    Wills, E. D., 1969, Lipid peroxide formation in microsomes–General considerations, Biochem. J. 113: 315–324.PubMedGoogle Scholar
  139. 139.
    Buege, J. A., and Aust, S. D., 1978, Microsomal lipid peroxidation, Methods Enzymol. 52: 302–310.PubMedGoogle Scholar
  140. 140.
    Mansuy, D., Leclaire, J., Fontecave, M., and Momenteau, M., 1984, Oxidation of monosubstituted olefins by cytochromes P-450 and heme models: Evidence for the formation of aldehydes in addition to epoxides and allylic alcohols, Biochem. Biophys. Res. Commun. 119: 319–325.PubMedGoogle Scholar
  141. 141.
    Mansuy, D., Battioni, P., and Renaud, J.-P., 1984, In the presence of imidazole, iron-and manganese-porphyrins catalyze the epoxidation of alkenes by alkyl hydroperoxides, J. Chem. Soc. Chem. Commun. 1984: 1255–1257.Google Scholar
  142. 142.
    Groves, J. T., 1980, Mechanisms of metal-catalyzed oxygen insertion, in: Metal Ion Activation of Dioxygen (T. G. Spiro, ed.), Wiley–Interscience, New York, pp. 125162.Google Scholar
  143. 143.
    Lee, W. A., and Bruice, T. C., 1985, Homolytic and heterolytic oxygen–oxygen bond scissions accompanying oxygen transfer to iron (III) porphyrins by percarboxylic acids and hydroperoxides: A mechanistic criterion for peroxidase and cytochrome P-450, J. Am. Chem. Soc. 107: 513–514.Google Scholar
  144. 144.
    Traylor, T. G., Lee, W. A., and Stynes, D. V., 1984, Model compound studies related to peroxidases. II. The chemical reactivity of a high valent protohemin compound, Tetrahedron 40: 553–568.Google Scholar
  145. 145.
    Capdevila, J., Estabrook, R. W., and Prough, R. A., 1980, Differences in the mechanism of NADPH- and cumene hydroperoxide-supported reactions of cytochrome P450, Arch. Biochem. Biophys. 200: 186–195.PubMedGoogle Scholar
  146. 146.
    Holdec, G., Yagi, H., Dansette, P., Jerina, D. M., Levin, W., Lu, A. Y. H., and Conney, A. H., 1974, Effects of inducers and epoxide hydrase on the metabolism of benzo[a]pyrene by liver microsomes and a reconstituted system—Analysis by high pressure liquid chromatography, Proc. Natl. Acad. Sci. USA 71: 4356–4360.Google Scholar
  147. 147.
    Nagata, C., Tagashia, Y., and Kodama, M., 1974, Metabolic activation of benzo[a]pyrene: Significance of its free radical in: The Biochemistry of Disease: Chemical Carcinogenesis, Volume 4 ( P.O.P. T’so and J. A. Di Paolo, eds.), Dekker, New York, pp. 87–111.Google Scholar
  148. 148.
    Capdevila, J., Saeki, Y., and Falck, J. R., 1984, The mechanistic plurality of cytochrome P-450 and its biological ramifications, Xenobiotica 14: 109–118.Google Scholar
  149. 149.
    Morgenstern, R., DePierre, J. W., Lind, C., Guthenberg, C., Mannervik, B., and Ernster, L., 1981, Benzo[a]pyrene quinones can be generated by lipid peroxidation and are conjugated with glutathione by glutathione S-transferase B from rat liver, Biochem. Biophys. Res. Commun. 99: 682–690.PubMedGoogle Scholar
  150. 150.
    Poulos, T. L., and Kraut, J., 1980, The sterochemistry of peroxidase catalysis, J. Biol. Chem. 255: 8199–8205.PubMedGoogle Scholar
  151. 151.
    Eglinton, D. G., Barber, D., Thomson, A. J., Greenwood, C., and Segal, A. W., 1982, Studies of cyanide binding to myeloperoxidase by electron paramagnetic resonance and magnetic circular dichroism spectroscopies, Biochim. Biophys. Acta 703: 187–195.Google Scholar
  152. 152.
    Ikeda-Saito, M., Prince, R. C., Argade, P. V., and Rousseau, D. L., 1984, Spectroscopic studies of myeloperoxidase, Fed. Proc. 43: 1561.Google Scholar
  153. 153.
    Sibbett, S. S., and Hurst, J. K., 1984, Structural analysis of myeloperoxidase by resonance spectroscopy, Biochemistry 23: 3007–3013.PubMedGoogle Scholar
  154. 154.
    Murthy, M. R. N., Reid, T. J., III, Sicignano, A., Tanaka, N., and Rossmann, M. G., 1981, Structure of beef liver catalase, J. Mol. Biol. 152: 465–499.PubMedGoogle Scholar
  155. 155.
    Di Nello, R. K., and Dolphin, D. H., 1981, Substituted hemins as probes for structure—function relationships in horseradish peroxidase, J. Biol. Chem. 256: 6903–6912.Google Scholar
  156. 156.
    Chance, B., 1952, The kinetics and stoichiometry of the transition from primary to secondary peroxidase peroxide complexes, Arch. Biochem. Biophys. 41: 416–424.PubMedGoogle Scholar
  157. 157.
    Critchlow, J. E., and Dunford, H. B., 1972, Studies on horseradish peroxidase. X. The mechanism of oxidation of p-cresol, ferrocyanide, and iodide by compound II, J. Biol. Chem. 247: 3714–3725.Google Scholar
  158. 158.
    Job, D., and Dunford, H. B., 1975, Substituent effect on oxidation of phenols and aromatic amines by horseradish peroxidase compound I, Eur. J. Biochem. 66: 607–614.Google Scholar
  159. 159.
    Roman, P., Dunford, H. B., and Evell, M., 1971, Studies on horseradish peroxidase. VII. A kinetic study of the oxidation of iodide by horseradish peroxidase compound II, Can. J. Chem. 49: 3059–3063.Google Scholar
  160. 160.
    Yamazaki, I., and Yakota, I., 1973, Oxidation states of peroxidase, Mol. Cell. Biochem. 2: 39–52.PubMedGoogle Scholar
  161. 161.
    Cormier, M. J., and Prichard, J., 1968, An investigation of the mechanism of the luminescent peroxidation of luminol by stopped flow techniques, J. Biol. Chem. 243: 4706–4714.PubMedGoogle Scholar
  162. 162.
    Chance, B., 1951, Enzyme—substrate compounds, in: Advances in Enzymology, Volume 12 ( F. F. Nord, ed.), Interscience, New York, pp. 153–188.Google Scholar
  163. 163.
    Harrison, J. E., 1982, The role of peroxide in the functional mechanism of myeloperoxidase, in: Oxidases and Related Redox Systems ( T. E. King, H. S. Mason, and M. Morrison, eds.), Pergamon Press, Elmsford, N. Y., pp. 717–732.Google Scholar
  164. 164.
    Poulos, T. L., Freer, S. T. Alden, R. A., Edwards, S. L., Skogland, U., Tokio, K., Eriksson, B., Xuong, N., Yonetani, T., and Kraut, J., 1980, The crystal structure of cytochrome c peroxidase, J. Biol. Chem. 255: 575–580.Google Scholar
  165. 165.
    Dawson, J. H., Trudell, J. R., Barth, G., Linder, R. E., Bunnenberg, E., Djerassi, C., Chiang, R., and Hager, L. P., 1976, Chloroperoxidase: Evidence for P-450 type heure environment from magnetic circular dichroism spectroscopy, J. Am. Chem. Soc. 98: 3709–3710.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Lawrence J. Marnett
    • 1
  • Paul Weller
    • 1
  • John R. Battista
    • 1
  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations