Regulation of Synthesis and Activity of Cytochrome P-450 Enzymes in Physiological Pathways

  • Michael R. Waterman
  • Maliyakal E. John
  • Evan R. Simpson

Abstract

Regulation of the levels and activities of various forms of cytochrome P450 has important implications in human biology. For example, it is well known that different individuals have different capacities to metabolize various drugs.1 Such variation may result, in part, from an allelic distribution of P-450 isozymes;2 or it may also result from individual variations in the level of a specific isozyme.3,4 Also, deficiencies of different steroid hydroxylases lead to various disease states. For example, adrenal hyperplasia occurs in approximately one in 5000 births, making it one of the more common inborn errors of metabolism.5 In at least 95% of these cases, the deficiency is detected as a decrease in steroid 21-hydroxylation in the adrenal cortex,6 a reaction catalyzed by a specific form of P-450 (P-450C21), leading to deficient cortisol biosynthesis. These are but a few examples which illustrate the reasons why investigation of the regulation of P-450 activities has become such an active area of research. In each example, understanding of the molecular basis of variations in P-450 gene expression will be necessary for the complete elucidation of the different phenotypes.

Keywords

Adrenal Cortex Aromatase Activity Physiological Pathway Microsomal Cytochrome ACTH Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boobis, A. R., and Davies, D. S., 1984, Human cytochromes P-450, Xenobiotica 14: 151–185.PubMedCrossRefGoogle Scholar
  2. 2.
    Rampersaud, A., and Walz, F. G., Jr., 1983, At least six forms of extremely homologous cytochromes P-450 in rat liver are encoded at two closely linked genetic loci, Proc. Natl. Acad. Sci. USA 80: 6542–6546.PubMedCrossRefGoogle Scholar
  3. 3.
    Larrey, D., Distlerath, L. M., Dannan, G. A., Wilkinson, G. R., and Guengerich, F. P., 1984, Purification and characterization of the rat liver microsomal cytochrome P450 involved in the 4-hydroxylation of debrisoquine, a prototype for genetic variation in oxidative drug metabolism, Biochemisty 23: 2787–2795.CrossRefGoogle Scholar
  4. 4.
    Dieter, H. H., Muller-Eberhardt, U., and Johnson, E. F., 1982, Rabbit hepatic progesterone 21-hydroxylase exhibits a bimodal distribution of activity, Science 217: 74 1743.Google Scholar
  5. 5.
    New, M. 1., DuPont, B., Grumbach, K., and Levin, L. S.. 1982, Congenital adrenal hyperplasia and related conditions, in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), McGraw—Hall, New York, pp. 973–1000.Google Scholar
  6. 6.
    Kuhule, U., Chow, D., Rapaport, R., Pang, S., Levine, L. S., and New, M. L., 1981, The 21-hydroxylase activity in the glomerulosa and fasciculata of the adrenal cortex in congenital adrenal hyperplasia, J. Clin. Endocrinol. Metab. 52: 534–544.CrossRefGoogle Scholar
  7. 7.
    Adesnick, M., Bar-Nun, S., Maschio, F., Zunich, M., Lippman, A., and Bard, E., 1981, Mechanism of induction of cytochrome P-450 by phenobarbital, J. Biol. Chem. 256: 10340–10345.Google Scholar
  8. 8.
    Bresnick, E., Brosseau, M., Levin. W., Reick, L., Ryan, D. E., and Thomas, P. E., 1981, Administration of 3-methylcholanthrene to rats increases the specific hybridizable mRNA coding for cytochrome P-450c, Proc. Natl. Acad. Sci. USA 78: 4083–4087.Google Scholar
  9. 9.
    Tuckey, R. H., Nebert, D. W., and Negishi, M., 1981, Structural gene product of the [Ah]complex: P1–450 induction by use of a cloned DNA sequence, J. Biol. Chem. 256: 6969–6974.Google Scholar
  10. 10.
    Shikita, M., and Hall, P. F., 1974, The stoichiometry of the conversion of cholesterol and hydroxycholesterols to pregnenolone (3a-hydroxypregn-5-en-20-one) catalyzed by adrenal cytochrome P-450, Proc. Natl. Acad. Sci. USA 71:1441–1445.Google Scholar
  11. 11.
    Burstein, S., Dinh, T., Co, N., Gut, M., Schleyer, H., Cooper, D. Y., and Rosenthal, O., 1972, Kinetic studies on substrate—enzyme interaction in the adrenal cholesterol side-chain cleavage system, Biochemistry 11: 2883–2891.PubMedCrossRefGoogle Scholar
  12. 12.
    Burstein, S., Middleditch, B. S., and Gut, M., 1974, Enzymatic formation of (20R, 22R)-20,22-dihydroxy-cholesterol from cholesterol and a mixture of ‘02 and 1802: Random incorporation of oxygen atoms. Biochem. Biophys. Res. Commun. 61: 64 2647.Google Scholar
  13. 13.
    Hume, R., and Boyd, G. S., 1978, Cholesterol metabolism and steroid-hormone production, Biochem. Soc. Trans. 6: 893–898.PubMedGoogle Scholar
  14. 14.
    Takemoto, C., Nakano, H., Sato, H., and Tamaoki, B., 1968, Fate of molecular oxygen required by endocrine enzymes for the side-chain cleavage of cholesterol, Biochim. Biophys. Acta 152: 749–757.PubMedCrossRefGoogle Scholar
  15. 15.
    Simpson, E. R., and Boyd, G. S., 1967, The cholesterol side-chain cleavage system of bovine adrenal cortex, Eur. J. Biochem. 2: 275–285.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilson, L. 0., and Harding, B. W., 1970, Studies on adrenal cortical cytochrome P450. III. Effect of carbon monoxide and light on steroid 113-hydroxylation, Biochemistry 9: 1615–1620.Google Scholar
  17. 17.
    Simpson, E. R., and Boyd, G. S., 1967, Partial resolution of the mixed-function oxidase involved in the cholesterol side-chain cleavage reaction of bovine adrenal mitochondria, Biochem. Biophys. Res. Commun. 28: 945–950.PubMedCrossRefGoogle Scholar
  18. 18.
    Bryson, M. J., and Sweat, M. L., 1968, Cleavage of cholesterol side chain associated with cytochrome P-450, flavoprotein, and nonheme iron-protein derived from the bovine adrenal cortex, J. Biol. Chem. 243: 2799–2804.PubMedGoogle Scholar
  19. 19.
    Shikita, M., and Hall, P. F., 1973, Cytochrome P-450 from bovine adrenocortical mitochondria: An enzyme for the side chain cleavage of cholesterol. I. Purification and properties, J. Biol. Chem. 248: 5598–5604.PubMedGoogle Scholar
  20. 20.
    Takemori, S., Suhara, K., Hashimoto, S., Hashimoto, M., Sato, H., Gomi, T., and Katagiri, M., 1975, Purification of cytochrome P-450 from bovine adrenocortical mitochondria by an “aniline-Sepharose” and the properties, Biochem. Biophys. Res. Commun. 63: 588–593.PubMedCrossRefGoogle Scholar
  21. 21.
    Seybert, D. W., Lancaster, J. R., Jr., Lambeth, J. D., and Kamin, H., 1979, Participation of the membrane in the side chain cleavage of cholesterol, J. Biol. Chem. 254: 12088–12098.PubMedGoogle Scholar
  22. 22.
    Orme-Johnson, N. R., Light, D. R., White-Stevens, R. W., and Orme-Johnson, W. H., 1979, Steroid binding properties of beef adrenal cortical cytochrome P-450 which catalyzes the conversion of cholesterol into pregnenolone, J. Biol. Chem. 254: 2103–2111PubMedGoogle Scholar
  23. 23.
    Hanukoglu, I., Spitsberg, V., Bumpus, J. A., Dus, K. M., and Jefcoate, C. R., 1981, Adrenal mitochondrial cytochrome P-450,cc, J. Biot Chem. 256: 4321–4328.Google Scholar
  24. 24.
    Kido, T., and Kimura, T., 1981, Stimulation of cholesterol binding to steroid-free cytochrome P-450,« by poly (1.-lysine), J. Biol. Chem. 256: 8561–8568.PubMedGoogle Scholar
  25. 25.
    Greenfield, N. J., Gerlimatos, B., Szwergold, B. S., Wolfson, A. J., Prasad, V. K., and Lieberman, S., 1981, Effects of phospholipid and detergent on the substrate specifity of adrenal cytochrome P-450sce: Substrate binding and kinetics of cholesterol side chain oxidation, J. Biol. Chem. 256: 4407–4417.PubMedGoogle Scholar
  26. 26.
    Mitani, F., Shimizu, T., Urno, R., Ishimura, Y., Izumi, S., Komatsu, N., and Watanabe, K., 1982, Cytochrome P-45011,3 and P-450sc. in adrenal cortex, J. Histochem. Cytochem. 30: 1066–1074.PubMedCrossRefGoogle Scholar
  27. 27.
    Ichikawa, Y., and Hiwatashi, A., 1982, The role of the sugar regions of components of the cytochrome P-450-linked mixed-function oxidase (monooxygenase) system of bovine adrenocortical mitochondria, Biochim. Biophys. Acta 705: 82–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Chashchin, V. L., Vasilevsky, V. I., Shakumatov, V. M., and Akhrem, A. A., 1984, The domain structure of the cholesterol side chain cleavage cytochrome P-450 from bovine adrenocortical mitochondria, Biochim. Biophys. Acta 787: 27–38.PubMedCrossRefGoogle Scholar
  29. 29.
    Lambeth, J. D., Kamin, H., and Seybert, D. W., 1980, Phosphatidylcholine vesicle reconstituted cytochrome P-450,cc: Role of the membrane in control of activity and spin state of the cytochrome, J. Biol. Chem. 255: 8282–8288.PubMedGoogle Scholar
  30. 30.
    Yago, N., Kobayashi, S., Sekiyama, S., Kurokawa, H., Iwai, V., Suzuki, I., and Ichii, S., 1970, Further studies on the submitochondrial localization of cholesterol side-chain cleaving enzyme system in hog adrenal cortex by sonic treatment, J. Biochem. 68: 775–783.PubMedGoogle Scholar
  31. 31.
    Kramer, R. E., DuBois, R. N., Simpson, E. R., Anderson, C. M., Kashiwagi, K., Lambeth, J. D., Jefcoate, C. R., and Waterman, M. R., 1982, Cell-free synthesis of precursor forms of mitochondrial steroid hydroxylase enzymes of the bovine adrenal cortex, Arch. Biochem. Biophys. 215: 478–485.PubMedCrossRefGoogle Scholar
  32. 32.
    Omura, T., Sanders, E., Estabrook, R. W., Cooper, D. Y., and Rosenthal, 0., 1966, Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a triphosphopyridine nucleotide-cytochrome P-450 reductase, Arch. Biochem. Biophys. 117: 660–673.CrossRefGoogle Scholar
  33. 33.
    Suhara, K., Ikeda, Y., Takemori, S., and Katagiri, M., 1972, The purification and properties of NADPH-adrenodoxin reductase from bovine adrenocortical mitochondria, FEBS Lett. 28: 45–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki, K., and Kimura, T., 1965, An iron protein as a component of steroid 11(3hydroxylase complex, Biochem. Biophys. Res. Commun. 19: 340–345.PubMedCrossRefGoogle Scholar
  35. 35.
    Chu, J.-W., and Kimura, T., 1973, Studies on adrenal steroid hydroxylases: Complex formation of the hydroxylase components, J. Biol. Chem. 248: 5183–5187.PubMedGoogle Scholar
  36. 36.
    Lambeth, J. D., McCaslin, D. R., and Kamin, H., 1976, Adrenodoxin reductase: adrenodoxin complex: Catalytic and thermodynamic properties, J. Biol. Chem. 251: 7545–7550.PubMedGoogle Scholar
  37. 37.
    Lambeth, J. D., and Pember, S. 0., 1983, Cytochrome P-450,c,.-adrenodoxin complex reduction properties of the substrate-associated cytochrome and relation of the reduction states of heure and iron-sulfur centers to association of the proteins, J. Biol. Chem. 258: 5596–5602.PubMedGoogle Scholar
  38. 38.
    Tsai, R. L., Gunsalus, I. C., and Dus, K., 1971, Composition and structure of camphor hydroxylase components and homology between putidaredoxin and adrenodoxin, Biochem. Biophys. Res. Commun. 45: 1300–1306.PubMedCrossRefGoogle Scholar
  39. 39.
    Mitani, F., 1979, Cytochrome P-450 in adrenocortical mitochondria, Mol. Cell. Biochem. 24: 21–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Suhara, K., Nakayama, K., Takikawa, 0., and Katagiri, M., 1982, Two forms of adrenodoxin reductase from mitochondria of bovine adrenal cortex, Eur. J. Biochem. 125: 659–664.Google Scholar
  41. 41.
    Tanaka, M., Haniu, M., Yasunobu, K. T., and Kimura, T., 1973, The amino acid sequence of bovine adrenodoxin, J. Biol. Chem. 248: 1141–1157.PubMedGoogle Scholar
  42. 42.
    Palmer, G., Brintzinger, H., and Estabrook, R. W., 1967, Spectroscopic studies on spinach ferridoxin and adrenodoxin, Biochemistry 6: 1658–1664.PubMedCrossRefGoogle Scholar
  43. 43.
    Kimura, T., Suzuki, K., Padmanabhan, R., Samejima, T., Terutani, 0., and Ui, N., 1969, Studies on steroid hydroxylase: Molecular properties of adrenal iron-sulfur protein, Biochemistry 8: 4027–4031.Google Scholar
  44. 44.
    Padmanabhan, R., and Kimura, T., 1970, Studies on adrenal steroid hydroxylases: Extrinsic properties of the optical activity in adrenal iron-sulfur protein (adrenodoxin), J. Biol. Chem. 245: 2469–2475.PubMedGoogle Scholar
  45. 45.
    Sartre, M., Vignais, P. V., and Idelman, S., 1969, Distribution of the steroid 11(3hydroxylase and the cytochrome P-450 in membranes of beef adrenal cortex mitochondria, FEBS Lett. 5: 135–140.CrossRefGoogle Scholar
  46. 46.
    Sweat, M. L., 1951, Enzymatic synthesis of 17-hydroxycorticosterone, J. Am. Chem. Soc. 73: 40–56.CrossRefGoogle Scholar
  47. 47.
    Wilson, L. D., Nelson, D. H., and Harding, B. W., 1965, A mitochondrial electron carrier involved in steroid hydroxylations, Biochim. Biophys. Acta 99: 391–393.PubMedCrossRefGoogle Scholar
  48. 48.
    Alfano, J., Brownie, A. C., Orme-Johnson, W. H., and Beinert, H., 1973, Adrenal mitochondrial cytochrome P-450 and cholesterol side chain cleavage activity, J. Biol. Chem. 248: 7860–7864.PubMedGoogle Scholar
  49. 49.
    Simpson, E. R., and Williams-Smith, D. L., 1976, Electron paramagnetic resonance spectra of mitochondrial and microsomal cytochrome P-450 from the rat adrenal, Biochim. Biophys. Acta 449: 59–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Biörkhem, I., and Karlmar, K.-E., 1975, 18-Hydroxylation of deoxycorticosterone by reconstituted systems from rat and bovine adrenals, Eur. J. Biochem. 51: 145–154.Google Scholar
  51. 51.
    Watanuki, M., Tilley, B. E., and Hall, P. R., 1977, Purification and properties of cytochrome P-450 (11(3 and 18-hydroxylase) from bovine adrenocortical mitochondria, Biochim. Biophys. Acta 483: 236–247.PubMedCrossRefGoogle Scholar
  52. 52.
    Sato, H., Suhara, A. K., Itagaki, E., Takemori, S., and Katagiri, M., 1978, Properties of an adrenal cytochrome P-450 (P-45011) for the hydroxylations of corticosteroids, Arch. Biochem. Biophys. 190: 307–314.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim, C. Y., Sugiyama, T., Okamoto, M., and Yamano, T., 1982, Regulation of 18hydroxycorticosterone formation in bovine adrenocortical mitochondria, J. Steroid Biochem. 18: 593–599.Google Scholar
  54. 54.
    Stachenko, J., and Giroud, C. J. P., 1959, Functional zonation of the adrenal cortex: Pathways of corticosteroid biogenesis, Endocrinology 64: 730–742.Google Scholar
  55. 55.
    Wada, A., Okamoto, M., Nonaka, Y., and Yamano, T., 1984, Aldosterone biosynthesis by a reconstituted cytochrome P-450115 system, Biochem. Biophys. Res. Commun. 119: 365–371.PubMedCrossRefGoogle Scholar
  56. 56.
    lyanagi, T., and Mason, H. S., 1973, Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase, Biochemistry 12: 2297–2308.CrossRefGoogle Scholar
  57. 57.
    Yasukochi, Y., Peterson, J. A., and Masters. B.S.S., 1979, NADPH-cytochrome c (P450) reductase, J. Biol. Chem. 254: 7097–7104.PubMedGoogle Scholar
  58. 58.
    Hiwatashi, A., and Ichikawa, Y., 1979, Physicochemical properties of reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase from bovine adrenocortical microsomes, Biochim. Biophys. Acta. 580: 44–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Estabrook, R. W., Cooper, D. Y., and Rosenthal, 0., 1963, The light-reversible carbon monoxide inhibition of the steroid C-21 hydroxylase system of the adrenal cortex, Biochem. Z. 338: 741–755.PubMedGoogle Scholar
  60. 60.
    Kominami, S., Ochi, H., Kobayashi, Y., and Takemori, S., 1980, Studies on the steroid hydroxylation system in adrenal cortex microsomes, J. Biol. Chem. 255: 3386–3394.PubMedGoogle Scholar
  61. 61.
    Bumpus, J. A., and Dus, K. M., 1982, Bovine adrenocortical microsomal hemoproteins P-45017, and P-450c21, J. Biol. Chem. 257: 12696–12704.PubMedGoogle Scholar
  62. 62.
    Yuan, M., Nakajin, S., Haniu, M., Shinoda, M., Hall, P. F., and Shively, J. E., 1983, Steroid 21-hydroxylase (cytochrome P-450) from porcine adrenocortical microsomes: Microsequence analysis of cysteine containing peptides. Biochemistry 22: 143–149.PubMedCrossRefGoogle Scholar
  63. 63.
    Nakajin, S., Shinoda, M., and Hall, P. F., 1983, Purification and properties of 17ahydroxylase from microsomes of pig adrenal: A second C21 side-chain cleavage system, Biochem. Biophys. Res. Commun. 111: 512–517.PubMedCrossRefGoogle Scholar
  64. 64.
    Nakajin, S., and Hall, P. F., 1981, Microsomal cytochrome P-450 from neonatal pig testis, J. Biot Chem. 256: 3871–3876.Google Scholar
  65. 65.
    Nakajin, S., Hall, P. F., and Onoda, M., 1981, Testicular microsomal cytochrome P450 for C21-steroid side chain cleavage, J. Biol. Chem. 256: 6134–6139.PubMedGoogle Scholar
  66. 66.
    Kashiwagi, K., Dafeldecker, W. P., and Salhanick, H. A., 1980, Purification and characterization of mitochondrial cytochrome P-450 associated with cholesterol side chain cleavage from bovine corpus luteum, J. Biot Chem. 255: 2606–2611.Google Scholar
  67. 67.
    Kashiwagi, K., Carraway, R. E., and Salhanick, H. A., 1982, Amino acid composition of cytochrome P-450,x, from bovine corpus luteum, Biochem. Biophys. Res. Commun. 105: 110–116.PubMedCrossRefGoogle Scholar
  68. 68.
    Tuckey, R. C., and Stevenson, P. M., 1984, Properties of bovine luteal cytochrome P-450..x, incorporated into artificial phospholipid vesicles, Int. J. Biochem. 16: 497–503.PubMedCrossRefGoogle Scholar
  69. 69.
    Tuckey, R. C., and Stevenson, P. M., 1984, Properties of ferredoxin reductase and ferrodoxin from the bovine corpus luteum, Int. J. Biochem. 16: 489–495.PubMedCrossRefGoogle Scholar
  70. 70.
    Buckley, D. 1., and Ramachandran, J., 1981, Characterization of corticotropin receptors on adrenocortical cells, Proc. Natl. Acad. Sci. USA 78: 7431–7435.CrossRefGoogle Scholar
  71. 71.
    Sala, G. B., Hayashi, K., Catt, K. J., and Dufau, M. L., 1979, Adrenocorticotropin action in isolated adrenal cells, J. Biol. Chem. 254: 3861–3865.PubMedGoogle Scholar
  72. 72.
    Stone, D., and Hechter, 0., 1954, Studies on ACTH action in perfused bovine adrenals: The site of action of ACTH in corticosteroidogenesis, Arch. Biochem. Biophys. 51: 457469.Google Scholar
  73. 73.
    Doering, C. H., and Clayton, R. B., 1969, Cholesterol side-chain cleavage activity in the adrenal gland of the young rat: Development and responsiveness to adrenocorticotropic hormone, Endocrinology 85: 500–511.PubMedCrossRefGoogle Scholar
  74. 74.
    Kimura, T., 1969, Effects of hypophysectomy and ACTH administration on the level of adrenal cholesterol side-chain desmolase, Endocrinology 85: 492–499.PubMedCrossRefGoogle Scholar
  75. 75.
    Pfeiffer, D. R., Chu, J. W., Kuo, T. H., Chan, S. W., Kimura, T., and Tchen, T. T., 1972, Changes in some biochemical parameters including cytochrome P-450 after hypophysectomy and their restoration by ACTH administration in rats four months post hypophysectomy. Biochem. Biophys. Res. Commun. 48: 486–490.PubMedCrossRefGoogle Scholar
  76. 76.
    Purvis, J. L., Canick, J. A., Mason, J. I., Estabrook, R. W., and McCarthy, J. L., 1973, Lifetime of adrenal cytochrome P-450 as influenced by ACTH, Ann. N.Y. Acad. Sci. 212: 319–342.PubMedCrossRefGoogle Scholar
  77. 77.
    Simpson, E. R., and Waterman, M. R., 1983, Regulation by ACTH of steroid hormone biosynthesis in the adrenal cortex, Can. J. Biochem. Cell Biol. 61: 692–707.PubMedCrossRefGoogle Scholar
  78. 78.
    Gospodarowicz, D., Ill, C. R., Hornsby, P. J., and Gill, G. N., 1977, Control of bovine adrenal cortical cell proliferation by fibroblast growth factor: Lack of effect of epidermal growth factor, Endocrinology 100: 1080–1089.PubMedCrossRefGoogle Scholar
  79. 79.
    Kowal, J., 1969, Adrenal cells in tissue culture. III. Effect of adrenocorticotropin and 3’,5’-cyclic adenosine monophosphate on 11(3-hydroxylase and other steroidogenic enzymes, Biochemistry 8: 1821–1831.PubMedCrossRefGoogle Scholar
  80. 80.
    Kowal, J., Simpson, E. R., and Estabrook, R. W., 1970, Adrenal cells in tissue culture: On the specificity of the stimulation of I113-hydroxylation by adrenocorticotropin, J. Biol. Chem. 245: 2438–2443.PubMedGoogle Scholar
  81. 81.
    Asano, K., and Harding, B. W., 1976, Biosynthesis of adrenodoxin in mouse adrenal tumor cells, Endocrinology 99: 977–987.PubMedCrossRefGoogle Scholar
  82. 82.
    Waterman, M. R., 1982, ACTH-mediated induction of synthesis and activity of cytochrome P-450s and related enzymes in cultured bovine adrenocortical cells, Xenobiotica 12: 773–786.PubMedCrossRefGoogle Scholar
  83. 83.
    DuBois, R. N., Simpson, E. R., Kramer, R. E., and Waterman, M. R., 1981, Induction of synthesis of cholesterol side chain cleavage cytochrome P-450 by ACTH in cultured bovine adrenocortical cells, J. Biol. Chem. 256: 7000–7005.PubMedGoogle Scholar
  84. 84.
    Kramer, R. E., Anderson, C. M., Peterson, J. A., Simpson, E. R., and Waterman, M. R., 1982, Adrenodoxin biosynthesis by bovine adrenal cells in monolayer culture: Induction by ACTH, J. Biol. Chem. 257: 14921–14925.PubMedGoogle Scholar
  85. 85.
    Kramer, R. E., Anderson, C. M., McCarthy, J. L., Simpson, E. R., and Waterman, M. R., 1982, Coordinate induction of synthesis of adrenal mitochondrial steroid hydroxylases by ACTH, Fed. Proc. 41: 1298.Google Scholar
  86. 86.
    Kramer, R. E., Simpson, E. R., and Waterman, M. R., 1983, Induction of 11p3-hydroxylase by corticotropin in primary cultures of bovine adrenocortical cells, J. Biol. Chem. 258: 3000–3005.PubMedGoogle Scholar
  87. 87.
    Kramer, R. E., Rainey, W. E., Funkenstein, B., Dee, A., Simpson, E. R., and Waterman, M. R., 1984, Induction of synthesis of mitochondrial steroidogenic enzymes of bovine adrenocortical cells by analogs of cyclic AMP, J. Biol. Chem. 259: 707–713.PubMedGoogle Scholar
  88. 88.
    Boggaram, V., Simpson, E. R., and Waterman, M. R., 1984, Induction of synthesis of bovine adrenocortical cytochromes P-450sec, P-45011e, P-450c21 and adrenodoxin by prostaglandins E2 and Fla and cholera toxin, Arch. Biochem. Biophys. 231: 271–279.PubMedCrossRefGoogle Scholar
  89. 89.
    Boggaram, V., Zuber, M. X., and Waterman, M. R., 1984, Turnover of newly synthesized cytochromes P-450,cc and P-45010 and adrenodoxin in bovine adrenocortical cells in monolayer culture: Effect of adrenocorticotropin, Arch. Biochem. Biophys. 231: 518–523.PubMedCrossRefGoogle Scholar
  90. 90.
    Hornsby, P. J., 1980, Regulation of cytochrome P-450 supported 1113-hydroxylation of deoxycortisol by steroids, oxygen and antioxidants in adrenocortical cell cultures, J. Biol. Chem. 255: 4020–4027.PubMedGoogle Scholar
  91. 91.
    Rani, S., Keri, G., and Ramachandran, J.. 1983, Studies on corticotropin-induced desensitization of normal rate adrenocortical cells, Endocrinology 112: 315–320.PubMedCrossRefGoogle Scholar
  92. 92.
    DuBois, R. N., Simpson, E. R., Tuckey, J., Lambeth, J. D., and Waterman, M. R., 1981, Evidence for a higher molecular weight precursor of cholesterol side chain cleavage cytochrome P-450 and induction of mitochondrial and cytosolic proteins by ACTH in adult bovine adrenal cells, Proc. Natl. Acad. Sci. USA 78: 1028–1032.PubMedCrossRefGoogle Scholar
  93. 93.
    Nabi, H. and Omura, T., 1980, In vitro synthesis of adrenodoxin and adrenodoxin reductase: Existence of a putative large precursor form of adrenodoxin, Biochem. Biophys. Res. Commun. 97:680–686.Google Scholar
  94. 94.
    Nabi, N., Kominami, S., Takemori, S., and Omura, T., 1980, In vitro synthesis of mitochondrial cytochrome P-450 (scc) and P-450 (11f3) and microsomal cytochrome P450 (C-21) by both free and bound polysomes isolated from bovine adrenal cortex, Biochem. Biophys, Res. Commun. 97: 687–693.Google Scholar
  95. 95.
    Harmey, M. A., Hallermayer, G., Korb, H., and Neupert, W., 1977, Transport of cytoplasmically synthesized proteins into the mitochondria in a cell free system from Neurospora crassa, Eur. J. Biochem 81: 533–544.PubMedCrossRefGoogle Scholar
  96. 96.
    Matocha, M. F., and Waterman, M. R., 1984, Discriminatory processing of the precursor forms of cytochrome P-4505cc and adrenodoxin by adrenocortical and heart mitochondria, J. Biol. Chem. 259: 8672–8678.PubMedGoogle Scholar
  97. 97.
    McAda, P. C., and Douglas, M. G., 1982, A neutral endopeptidase involved in the processing of an ATPase subunit precursor in mitochondria, J. Biol. Chem. 257: 31773182.Google Scholar
  98. 98.
    Omura, T., Ito, A., Okada, Y., Sagara, Y., and Ono, H., 1983, Proteolytic processing of enzyme precursors by liver and adrenal cortex mitochondria, in: Protease Inhibitors: Medical and Biological Aspects ( N. Katunuma, H. Umezawa, and H. Holzer, eds.), Springer-Verlag, Berlin, pp. 307–312.Google Scholar
  99. 99.
    Funkenstein, B., McCarthy, J. L., Dus, K. M., Simpson, E. R., and Waterman, M. R., 1983, Effect of adrenocorticotropin on steroid 21-hydroxylase synthesis and activity in cultured bovine adrenocortical cells, J. Biol. Chem. 258: 9398–9405.PubMedGoogle Scholar
  100. 100.
    DuBois, R. N., and Waterman, M. R., 1979, Effect of phenobarbital administration to rats on the level of the in vitro synthesis of cytochrome P-450 directed by total rat liver RNA, Biochem. Biophys. Res. Commun. 90: 150–157.PubMedCrossRefGoogle Scholar
  101. 101.
    Colbert, R. A., Bresnick, E., Levin, W., Ryan, D. E., and Thomas, P. E., 1979, Synthesis of liver cytochrome P-450b in a cell free protein synthesizing system, Biochem. Biophys. Res. Commun. 91: 886–891.PubMedCrossRefGoogle Scholar
  102. 102.
    Bar-Nun, S., Kreibach, G., Adesnick, M., Alterman, L., Negishi, M., and Sabatini, D. D., 1980, Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes. Proc. Natl. Acad, Sci USA 77: 965–969.CrossRefGoogle Scholar
  103. 103.
    Fevold, H. R., and Brown, R. L., 1978, The apparent lack of stimulation of rabbit adrenal 21-hydroxylase activity by ACTH, J. Steroid Biochem. 9: 583–584.PubMedCrossRefGoogle Scholar
  104. 104.
    Hornsby, P. J., 1982, Regulation of 21-hydroxylase activity by steroids in cultured bovine adrenocortical cells: Possible significance for adrenocortical androgen synthesis, Endocrinology 111: 1092–1101.PubMedCrossRefGoogle Scholar
  105. 105.
    Kramer, R. E., McCarthy, J. L., Simpson, E. R., and Waterman, M. R., 1983, Effects of ACTH on steroidogenesis in bovine adrenocortical cells in primary culture: Increased secretion of 17a-hydroxylated steroids associated with a refractoriness in total steroid output, J. Steroid Biochem. 18: 715–723.PubMedCrossRefGoogle Scholar
  106. 106.
    DiBartolomeis, M. J., and Jefcoate, C. R., 1984, Characterization of the acute stimulation of steroidogenesis in primary bovine adrenal cortical cell cultures, J. Biol. Chem. 259: 10159–10167.PubMedGoogle Scholar
  107. 107.
    McCarthy, J. L., Kramer, R. E., Funkenstein, B., Simpson, E. R., and Waterman, M. R., 1983, Induction of 17a-hydroxylase (cytochrome P-45017,,) activity by adrenocorticotropin in bovine adrenocortical cells maintained in monolayer culture, Arch Biochem. Biophys. 222: 590–598.PubMedCrossRefGoogle Scholar
  108. 108.
    Zuber, M. X., Simpson, E. R., Hall, P. F., and Waterman, M. R., 1985, Effects of adrenocorticotropin on 17a-hydroxylase activity and cytochrome 1345017, synthesis in bovine adrenocortical cells, J. Biol. Chem. 260: 1842–1848.PubMedGoogle Scholar
  109. 109.
    Fevold, H. R., Wilson, P. L., and Slalina, S. M., 1978, Stimulated rabbit adrenal 17ahydroxylase: Kinetic properties and a comparison with those of 3p-hydroxysteroid dehydrogenase, J. Steroid Biochem. 9: 1033–1041.PubMedCrossRefGoogle Scholar
  110. 110.
    Schiebinger, R. J., Albertson, B. D., Cassorria, F. G., Bowyer, D. W., Gellhoed, G. W., Cutler, G. B., Jr., and Loriaux, D. L., 1981, The developmental changes in plasma adrenal androgens during infancy and adrenarche are associated with changing activities of adrenal microsomal 17-hydroxylase and 17,20-desmolase, J. Clin. Invest. 67: 1177–1182.PubMedCrossRefGoogle Scholar
  111. 111.
    Katagiri, M., Suhara, K., Shiroo, M., and Fujimura, Y., 1982, Role of cytochrome b5 in the cytochrome P-450-mediated C21-steroid 17,20-lyase reaction, Biochem. Biophys. Res. Commun. 108: 379–384.PubMedCrossRefGoogle Scholar
  112. 112.
    Onoda, M., and Hall, P. F., 1982, Cytochrome b5 stimulates purified testicular microsomal P-450 (C21 side-chain cleavage), Biochem. Biophys. Res. Commun. 108: 454–460.PubMedCrossRefGoogle Scholar
  113. 113.
    Nabi, N., Ishikawa, T., Ohashi, M., and Omura, T., 1983, Contributions of cytoplasmic free and membrane-bound ribosomes to the synthesis of NADPH-adrenodoxin reductase and adrenodoxin of bovine adrenal cortex mitochondria, J. Biochem. 94: 505–515.Google Scholar
  114. 114.
    Nabi, N., Kominami, S., Takemori, S., and Omura, T., 1983, Contributions of cytoplasmic free and membrane-bound ribosomes to the synthesis of mitochondria cytochrome P-450(scc) and P-450(1113) and microsomal cytochrome P-450(C-21) in bovine adrenal cortex, J. Biochem. 94: 517–527.Google Scholar
  115. 115.
    Matteson, K. J., Chung, B., and Miller, W. L., 1984, Molecular cloning of DNA complementary to bovine adrenal P-4505ce mRNA, Biochem. Biophys. Res. Commun. 120: 264–270.PubMedCrossRefGoogle Scholar
  116. 116.
    Morahashi, K., Fujii-Kuriyama, Y., Okada, Y., Sogawa, Y., Hirose, T., Inayama, S., and Omura, T., 1984, Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450 (sec) of bovine adrenal cortex. Proc. Natl. Acad. Sci. USA 81: 4647–4651.CrossRefGoogle Scholar
  117. 117.
    John, M. E., John, M. C., Ashley, P., MacDonald, R. J., Simpson, E. R., and Waterman, M. R., 1984, Identification and characterization of eDNA clones specific for cholesterol side-chain cleavage cytochrome P-450, Proc. Natl. Acad. Sci. USA 81: 5628–5632.PubMedCrossRefGoogle Scholar
  118. 118.
    White, P. C., New, M. I., and DuPont, B., 1984, Cloning and expression of cDNA encoding a bovine adrenal cytochrome P-450 specific for steroid 21-hydroxylation, Proc. Natl. Acad. Sci. USA 81: 1986–1990.PubMedCrossRefGoogle Scholar
  119. 119.
    White, P. C., New, M. I., and DuPont, B., 1984, HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation, Proc. Natl. Acad. Sci. USA 81: 7505–7509.PubMedCrossRefGoogle Scholar
  120. 120.
    John, M. E., John, M. C., Simpson, E. R., and Waterman, M. R., 1985, Cytochrome P-450„0 gene expression: Transcriptional control by an ACTH regulated protein factor, J. Biol. Chem. 260: 5760–5767.PubMedGoogle Scholar
  121. 121.
    Negishi, M., and Nebert, D. W., 1981, Structural gene products of the Ah complex: Increases in large mRNA from mouse liver associated with cytochrome P1–450 induction by 3-methylcholanthrene, J. Biol. Chem. 256: 3085–3091.PubMedGoogle Scholar
  122. 122.
    Omiencinski, C. J., Hines, R. N., Foldes, R. L., Levy, J. B., and Bresnick, E., 1983, Molecular induction by phenobarbital of a rat hepatic form of cytochrome P-450: Expression of a 4-kilobase messenger RNA, Arch. Biochem. Biophys. 227: 478–493.CrossRefGoogle Scholar
  123. 123.
    Gonzales, F. J., and Kasper, C. B., 1982, Cloning of DNA complementary to rat liver NADPH cytochrome c (P-450) oxidoreductase and cytochrome P-450b mRNAs, J. Biol. Chem. 257: 5962–5968.Google Scholar
  124. 124.
    Schenkman, J. B., Jansson, I., Backes, W. L., Chen, K.-C., and Smith, C., 1982, Dissection of cytochrome P-450 isozymes (RLM): Four fractions of untreated rat liver microsomal proteins, Biochem. Biophys. Res. Commun. 107: 1517–1523.PubMedCrossRefGoogle Scholar
  125. 125.
    Zuber, M. X., Simpson, E. R., and Waterman, M. R., 1985, Regulation of cytochrome P-45017,, activity and synthesis in bovine adrenocortical cells, Ann. N.Y. Acad. Sci. in press.Google Scholar
  126. 126.
    Waterman, M. R., John, M. E., Boggaram, V., Zuber, M. X., and Simpson, E. R., 1984, Mechanisms of induction of endogenous substrate oxidation, in: Microsomes and Drug Oxidations ( A. R. Boobis, J. Caldwell, F. deMatteis, and C. R. Elcombe, eds.), Taylor and Francis, London, pp. 136–144.Google Scholar
  127. 127.
    Israel, D. I., and Whitlock, J. P., Jr., 1983, The Induction of mRNA specific for cytochrome P1–450 in wild type and variant mouse hepatoma cells, J. Biol. Chem. 258: 10390–10394.PubMedGoogle Scholar
  128. 128.
    Anderson, C. M., and Mendelson, C. R., 1985, Regulation of steroidogenesis in rat Leydig cells in culture: Effect of human chorionic gonadtropin and dibutyrylcyclic AMP on the synthesis of cholesterol side chain cleavage cytochrome P-450 and adrenodoxin, Arch. Biochem. Biophys. 238: 378–387.PubMedCrossRefGoogle Scholar
  129. 129.
    Mason, J. I., MacDonald, A. A., and Laptook, A., 1984, The activity and biosynthesis of cholesterol side-chain cleavage enzyme in cultured immature pig testis cells, Biochim. Biophys. Acta 795: 504–512.PubMedCrossRefGoogle Scholar
  130. 130.
    Purvis, J. L., Canick, J. A., Latie, S. A., Rosenbaum, J. H., Hologgitas, J., and Menard, R. H., 1973, Life time of microsomal cytochrome P-450 and steroidogenic enzymes in rat testis influenced by human chorionic gonadotrophin, Arch. Biochem. Biophys. 159: 39–49.PubMedCrossRefGoogle Scholar
  131. 131.
    Malaska, T., and Payne, A. H., 1984, Luteinizing hormone and cyclic AMP-mediated induction of microsomal cytochrome P-450 enzymes in cultured mouse Leydig cells, J. Biol. Chem. 259: 11654–11657.PubMedGoogle Scholar
  132. 132.
    Funkenstein, B., Waterman, M. R., and Simpson, E. R., 1984, Induction of synthesis of cholesterol side chain cleavage cytochrome P-450 and adrenodoxin by follicle-stimulating hormone, 8-bromo-cyclic AMP and low density lipoprotein in cultured bovine granulosa cells, J. Biol. Chem. 259: 8572–8577.PubMedGoogle Scholar
  133. 133.
    Funkenstein, B., Waterman, M. R., Masters, B.S.S., and Simpson, E. R., 1983, Evidence for the presence of cholesterol side chain cleavage cytochrome P-450 and adrenodoxin in granulosa cells, J. Biol. Chem. 258: 10187–10191.PubMedGoogle Scholar
  134. 134.
    Goto, J., and Fishman, J., 1977, Participation of a nonenzymatic transformation in the biosynthesis of estrogen from androgens, Science 195: 80–81.PubMedCrossRefGoogle Scholar
  135. 135.
    Thompson, E. A., Jr., and Siiteri, P. K., 1974, Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione, J. Biol. Chem. 249: 5364–5372.PubMedGoogle Scholar
  136. 136.
    Schindler, A. E., Ebert, A., and Friedrich, E., 1972, Conversion of androstenedione to estrone by human fat tissue, J. Clin. Endocrinol. Metab. 35: 627–630.PubMedCrossRefGoogle Scholar
  137. 137.
    Dorrington, J. H., and Armstrong, D. T., 1975, Follicle-stimulating hormone stimulates estradio1–1713 synthesis in cultured Sertoli cells, Proc. Natl. Acad. Sci. USA 72: 2677 2681.Google Scholar
  138. 138.
    Valladares, L. E., and Payne, A. H., 1979, Induction of testicular aromatization by luteinizing hormone in mature rat, Endocrinology 105: 431–436.PubMedCrossRefGoogle Scholar
  139. 139.
    Naftolin, F., Ryan, K. J., Davis, I. J., Reddy, V. V., Flores, F., Petro, Z., and Kuhn, M., 1975, The formation of estrogens by central neuroendocrine tissues, Recent Prog. Horm. Res. 31: 295–315.PubMedGoogle Scholar
  140. 140.
    Ryan, K. J., 1959, Metabolism of C-16-oxygenated steroids by human placenta: The formation of estriol, J. Biol. Chem. 234: 2006–2008.PubMedGoogle Scholar
  141. 141.
    Ryan, K. J., 1959, Biological aromatization of steroids, J. Biol. Chem. 234: 268–272.PubMedGoogle Scholar
  142. 142.
    Allen, F. A., Valdivia, E., and Colas, A. E., 1970, The aromatizing activity of placental mitochondrial and microsomal fractions, Gynecol. Invest. 1: 277–287.CrossRefGoogle Scholar
  143. 143.
    Moorthy, K. B., and Meigs, R. A., 1978, Aromatization of steroids by mitochondrial preparations from human term placenta, Biochim. Biophys. Acta 528: 222–229.PubMedCrossRefGoogle Scholar
  144. 144.
    Canick, J. A., and Ryan, K. J., 1978, Properties of the aromatase enzyme system associated with the mitochondrial fractions of human placenta, Steroids 32: 499–509.PubMedCrossRefGoogle Scholar
  145. 145.
    Canick, J. A., and Ryan, K. J., 1976, Cytochrome P-450 and the aromatization of 16ahydroxytestosterone and androstenedione by human placental microsomes, Mol. Cell. Endocrinol. 6: 105–115.PubMedCrossRefGoogle Scholar
  146. 146.
    Meigs, R. A., and Ryan, K. J., 1968, Cytochrome P-450 and steroid biosynthesis in the human placenta, Biochim. Biophys. Acta. 165: 476–482.PubMedCrossRefGoogle Scholar
  147. 147.
    Thompson, E. A., Jr., and Siiteri, P. K., 1974, The involvement of human placental microsomal cytochrome P-450 in aromatization, J. Biol. Chem. 249: 5373–5378.PubMedGoogle Scholar
  148. 148.
    Estabrook, R. W., Franklin, M. R., and Hildebrandt, A. G., 1970, Factors influencing the inhibitory effect of carbon monoxide on cytochrome P-450-catalyzed mixed function oxidase reactions, Ann. N.Y. Acad. Sci. 174: 218–232.PubMedCrossRefGoogle Scholar
  149. 149.
    Zachariah, P. K., and Judan, M. R., 1977, Inhibition of human placental mixed function oxidation with carbon monoxide: Reversal with monochromatic light, J. Steroid Biochem. 8: 221–228.PubMedCrossRefGoogle Scholar
  150. 150.
    Thompson, E. A., Jr., and Siiteri, P. K., 1976, Partial resolution of the placental microsomal aromatase complex, J. Steroid Biochem. 7: 635–639.CrossRefGoogle Scholar
  151. 151.
    Simpson, E. R., and Mendelson, C. R., 1984, Preparation and characterization of poly-clonal antibodies against aromatase cytochrome P-450 in Abstracts, 7th International Congress of Endocrinology, Quebec City, p. 1450.Google Scholar
  152. 152.
    Covey, D. F., Hood, W. F., and Parikh, V. D., 1981, 103-Propyryl-substituted steroids: Mechanism-based enzyme-activated irreversible inhibitors of estrogen biosynthesis, J. Biol. Chem. 256: 1076–1080.Google Scholar
  153. 153.
    Marette, P. A., and Robinson, C. H., 1982, Inhibition and inactivation of estrogen synthetase (aromatase) by fluorinated substrate analogues, Biochemistry 21: 2733–2738.Google Scholar
  154. 154.
    Johnston, J. O., Wright, C. L., and Metcalf, B. W., 1984, Biochemical and endocrine properties of a mechanism-based inhibitor of aromatase, Endocrinology 115: 776–785.PubMedCrossRefGoogle Scholar
  155. 155.
    Kellis, J. T., Jr., and Vickery, L. E., 1984, Inhibition of human estrogen synthetase (aromatase) by flavones, Science 255: 1032–1034.CrossRefGoogle Scholar
  156. 156.
    Fritz, I. B., Griswold, M. D., Louis, B. G., and Dorrington, J. H., 1976, Similarity of responses of cultured Sertoli cells to cholera toxin and FSH, Mol. Cell. Endocrinol. 5: 289–294.PubMedCrossRefGoogle Scholar
  157. 157.
    Mendelson, C. R., Cleland, W. H., Smith, M. E., and Simpson, E. R., 1982, Regulation of aromatase activity of stromal cells from human adipose tissue, Endocrinology 111: 1077–1085.PubMedCrossRefGoogle Scholar
  158. 158.
    Bellino, F. L., and Hussa, R. O., 1982, Estrogen synthetase stimulation by dibutyryl cyclic AMP in human choriocarcinoma cells in culture, Endocrinology 111: 1038–1044.PubMedCrossRefGoogle Scholar
  159. 159.
    Dorrington, J. H., Moon, Y. S., and Armstrong, D. R., 1975, Estradiol-173-biosynthesis in cultured granulosa cells from hypophysectomized immature rats: Stimulation by follicle-stimulating hormone, Endocrinology 97: 1328–1331.PubMedCrossRefGoogle Scholar
  160. 160.
    Mendelson, C. R., Smith, M. E., Cleland, W. H. and Simpson, E. R., 1984, Regulation of aromatase activity of adipose stromal cells by catecholamines and adrenocorticotropin, Mol. Cell. Endocrinol. 37: 61–72.PubMedCrossRefGoogle Scholar
  161. 161.
    Hsueh, A. J. W., Jones, P. B. C., Adashi, E. Y., Wang, C., Zhuang, L. Z., and Welsh, T. H., Jr., 1983, Intraovarian mechanisms in the hormonal control of granulosa cell differentiation in rats, J. Reprod. Fertil. 69: 325–342.PubMedCrossRefGoogle Scholar
  162. 162.
    Windaus, A., Schenk, F., and vonWelder, F., 1936, Über das antirachitisch wirksame Bestrahlungs-Produkt ans 7-Dehydrocholesterin, Hoppe-Seylers Z. Physiol. Chem. 241: 100–103.CrossRefGoogle Scholar
  163. 163.
    Olson, E. B., Jr., Knutson, J. C., Bhattacharyya, M. H., and DeLuca, H. F., 1976, The effect of hepatectomy on the synthesis of 25-hydroxyvitamin D3, J. Clin. Invest. 57: 1213–1220.Google Scholar
  164. 164.
    Frazer, D. R., and Kodicek, E., 1970, Unique biosynthesis by kidney of a biologically active metabolite, Nature 228: 764–766.CrossRefGoogle Scholar
  165. 165.
    Gray, R., Boyle, I., and DeLuca, H. F., 1971, Vitamin D metabolism: The role of kidney tissue, Science 172: 1232–1234.PubMedCrossRefGoogle Scholar
  166. 166.
    Tanaka, Y., Halloran, B., Schnoes, H. K., and DeLuca, H. F., 1979, In vitro production of 1,25-dihydroxyvitamin D3 by rat placental tissue, Proc. Natl. Acad. Sci. USA 76: 5033–5035.Google Scholar
  167. 167.
    Madhok, T. C., and DeLuca, H. F., 1979, Characteristics of the rat liver microsomal enzyme system converting cholecalciferol into 25-hydroxycholecalciferol: Evidence for the participation of cytochrome P-450, Biochem. J. 184: 491–499.PubMedGoogle Scholar
  168. 168.
    Hayashi, S.-I., Nashiro, M., and Okuda, K., 1984, Purification of cytochrome P-450 catalyzing 25-hydroxylation of vitamin D3 from rat liver microsomes, Biochem. Biophys. Res. Commun. 121: 994–1000.PubMedCrossRefGoogle Scholar
  169. 169.
    Björkhem, J., Holmberg, I., Oftebro, H., and Pederson, J. I., 1980, Properties of a reconstituted vitamin D3 25-hydroxylase from rat liver mitochondria, J. Biol. Chem. 255: 5244–5249.PubMedGoogle Scholar
  170. 170.
    Holick, M. F., and Clark, M. B., 1978, The photobiogenesis and metabolism of vitamin D, Fed. Proc. 37: 2567–2574.Google Scholar
  171. 171.
    Ghazarian, J. G., Jefcoate, C. R. Knutson, J. C., Orme-Johnson, W. H., and DeLuca, H. F., 1974, Mitochondrial cytochrome P-450: A component of chick kidney 25-hydroxycholecalciferol-la-hydroxylase, J. Biol. Chem. 249: 3028–3033.Google Scholar
  172. 172.
    Hiwatashi, A., Nishii, Y., and Ichikawa. Y., 1982, Purification of cytochrome P-45001,, (25-hydroxyvitamin D3–1a-hydroxylase) of bovine kidney mitochondria, Biochem. Biophys. Res. Commun. 105: 320–327.PubMedCrossRefGoogle Scholar
  173. 173.
    Ghazarian, J. G., and DeLuca, H. F., 1974, 25-Hydroxylase: A specific requirement for NADPH and a hemoprotein component in kidney mitochondria, Arch. Biochem. Biophys. 160: 63–72.Google Scholar
  174. 174.
    Omdahl, J. L., Gray, R. W., Boyle, I. T., Knutson, J., and DeLuca, H. F., 1972, Regulation and metabolism of 25-hydroxycholecalciferol by kidney tissue, Nature New Biol. 237: 63–64.PubMedGoogle Scholar
  175. 175.
    Garabedian, M., Holick, M. F., DeLuca, H. F., and Boyle, I. T., 1972, Control of 25hydroxycholecalciferol metabolism by the parathyroid gland, Proc. Natl. Acad. Sci. USA 69: 1673–1675.PubMedCrossRefGoogle Scholar
  176. 176.
    Zull, J. E., and Repke, D. W., 1972, The tissue localization of tritiated parathyroid hormone in thyroparathyroidectomized rats, J. Biol. Chem. 247: 2195–2199.PubMedGoogle Scholar
  177. 177.
    Ghazarian, J. G., 1979, Kidney cyclic nucleotide-mediated hydroxylations of 25-hydroxyvitamin D3, in: Molecular Endocrinology ( 1. Maclntyre and M. Szelke, eds.), Elsevier/North-Holland, Amsterdam, pp. 333–340.Google Scholar
  178. 178.
    Spanos, E., Brown, D. J., Stevenson, J. C., and Maclntyre, I., 1981, Stimulation of 1,25-dihydroxycholecalciferol production by prolactin and related peptides in intact renal cell preparations in vitro, Biochim. Biophys. Acta. 672: 7–15.PubMedCrossRefGoogle Scholar
  179. 179.
    Matsumoto, T., Horiuchi, N., Suda, T., Takahashi, H., Shunazawa, E., and Ogata, E., 1979, Failure to demonstrate stimulatory effect of prolactin on vitamin D metabolism in vitamin D-deficient rats, Metabolism 28: 925–927.PubMedCrossRefGoogle Scholar
  180. 180.
    Castillo, L., Tanaka, Y., Wineland, M. J., Jowsey, J. O., and DeLuca, H. F., 1979, Production of 1,25-dihydroxyvitamin D3 and formation of medullary bone in the egg-laying hen, Endocrinology 104: 1598–1601.PubMedCrossRefGoogle Scholar
  181. 181.
    Trechsel, U., Bonjous, J. P., and Fleisch, H., 1979, Regulation of the metabolism of 25-hydroxyvitamin D3 in primary cultures of chick kidney cells, J. Clin. Invest. 64: 206–217.PubMedCrossRefGoogle Scholar
  182. 182.
    Tanaka, Y., Lorenc, R. S., and DeLuca, H. F., 1975, The role of 1.25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick 25-hydroxyvitamin D3–24-hydroxylase, Arch. Biochem. Biophys. 171: 521–526.CrossRefGoogle Scholar
  183. 183.
    Henry, H. L., 1979, Regulation of the hydroxylation of 25-hydroxyvitamin D3 in vivo and in primary cultures of chick kidney cells, J. Biol. Chem. 254: 2722–2729.PubMedGoogle Scholar
  184. 184.
    Simpson, R. N., Franceschi, R. T., and DeLuca, H. F., 1980, Characterization of a specific, high affinity binding macromolecule for Ia,25-dihydroxyvitamin D3 in cultured chick kidney cells, J. Biol. Chem. 255: 10160–10166.PubMedGoogle Scholar
  185. 185.
    Gray, R. W., Weber, H. P., Dominguez, J. H., and Lemann, J., Jr., 1974, The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans, J. Clin. Endocrinol. Metab. 39: 1045–1056.PubMedCrossRefGoogle Scholar
  186. 186.
    Knutson, J. C., and DeLuca, H. F., 1974, 25-Hydroxyvitamin D3–24-hydroxylase: Cellular localization and properties, Biochemistry 13: 1543–1547.Google Scholar
  187. 187.
    Kulkowski, J. A., Chan, T., Martinez, J., and Ghazarian, J. G., 1979, Modulation of 25-hydroxyvitamin D3–24-hydroxylase by aminophylline: A cytochrome P-450 monooxygenase system, Biochem. Biophys. Res. Commun. 90: 50–57.PubMedCrossRefGoogle Scholar
  188. 188.
    Tanaka, Y., Lorenc, R. S., and DeLuca, H. F., 1975, The role of I,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D324-hydroxylase, Arch. Biochem. Biophys. 171: 521–526.CrossRefGoogle Scholar
  189. 189.
    Wichmann, J. K., DeLuca, H. F., Schnoes, H. F., Horst, R. L., Shepard, R. M., and Jorgensen, N. A., 1979, 25-Hydroxyvitamin D3 26,23-lactone: A new in vivo metabolite of vitamin D, Biochemistry 18: 4775–4780.Google Scholar
  190. 190.
    Napoli, J. L., Pramanik, B. C., Royal, P. M., Reinhardt, T. A., and Horst, R. L., 1983, Intestinal synthesis of 24-keto-1,25-dihydroxyvitamin D3: A metabolite formed in vivo with high affinity for the vitamin D cytosolic receptor, J. Biol. Chem. 258: 9100–9107.PubMedGoogle Scholar
  191. 191.
    Capdevila, J., Saeki, Y., and Falck, J. R., 1984, The mechanistic plurality of cytochrome P-450 and its biological ramifications, Xenobiotica 14: 105–118.PubMedCrossRefGoogle Scholar
  192. 192.
    Antony, G. J., and Landau, B. R., 1968, Relative contributions of a-,13- and u-oxidative pathways to in vitro fatty acid oxidation in rat liver, J. Lipid Res. 9: 267–269.PubMedGoogle Scholar
  193. 193.
    Preiss, B., and Bloch, K., 1964, co-Oxidation of long chain acids in rat liver, J. Biol. Chem. 239: 85–88.Google Scholar
  194. 194.
    Bjorkhem, D., and Danielsson, H., 1970, co-Oxidation of branched chain fatty acids in rat liver homogenates, Eur. J. Biochem. 14: 473–477.Google Scholar
  195. 195.
    Das, M. L., Orrenius, S., and Ernster, L., 1968, On the fatty acid and hydrocarbon hydroxylation in rat liver microsomes, Eur. J. Biochem. 4: 519–523.PubMedCrossRefGoogle Scholar
  196. 196.
    Lu, A. Y. H., and Coon, M. J., 1968, Role of hemoprotein P-450 in fatty acid w-hydroxylation in a soluble enzyme system for liver microsomes. J. Biol. Chem. 243: 1331–1332.PubMedGoogle Scholar
  197. 197.
    Wada, F., Shibata, H., Groto, N., and Sakamoto, Y., 1968, Participation of the microsomal electron transport system involving cytochrome P-450 in co-oxidation of fatty acids, Biochim. Biophys. Acta 162: 518–524.PubMedCrossRefGoogle Scholar
  198. 198.
    Schenkman, J. B., Remmer, H., and Estabrook, R. W., 1967, Spectral studies of drug interaction with hepatic microsomal cytochrome, Mol. Pharmacol. 3: 113–123.PubMedGoogle Scholar
  199. 199.
    Orrenius, S., and Thor, H., 1969, Fatty acid interaction with the hydroxylative enzyme system of rat liver microsomes, Eur. J. Biochem. 9: 415–418.PubMedCrossRefGoogle Scholar
  200. 200.
    Ichihara, K., Kusunose, E., and Kusunose, M., 1971, A fatty acid w-hydroxylation system solubilized from porcine kidney cortex microsomes, Biochim. Biophys. Acta 239: 178–189.PubMedCrossRefGoogle Scholar
  201. 201.
    Ellin, A., Jakobsson, S. V., Schenkman, J. B., and Orrenius, S., 1972, Cytochrome P-450 of rat kidney cortex microsomes: Its involvement in fatty acid w-and (w-1)-hydroxylation, Arch. Biochem. Biophys. 150: 64–71.PubMedCrossRefGoogle Scholar
  202. 202.
    Jakobsson, S., Thor, H., and Orrenius, S., 1970, Fatty acid inducible cytochrome P450 of rat kidney cortex microsomes, Biochem. Biophys. Res. Commun. 39: 1073–1080.PubMedCrossRefGoogle Scholar
  203. 203.
    Gibson, G. G.. Orton, T. C., and Tamburini, P. P., 1982, Cytochrome P-450 induction by clofibrate, Biochem. J. 203: 161–168.Google Scholar
  204. 204.
    Parker, G. L., and Orton, T. C., 1980, Induction by oxyisobutyrates of hepatic microsomal cytochrome P-450 with specificity towards hydroxylation of fatty acids, in: Biochemistry, Biophysics and Regulation of Cytochrome P-450 (J. A. Gustafsson, J. Carlstedt-Duke, A. Mode, and J. Rafter, eds.), Elsevier/North-Holland, Amsterdam, pp. 373–377.Google Scholar
  205. 205.
    Tamburini, P. P., Masson, H. A., Bains. S. K., Makowski, R. J., Morris, B., and Gibson, G. G., 1984, Multiple forms of hepatic cytochrome P-450: Purification, characterization and comparison of a novel clofibrate indued isozyme with other minor forms of cytochrome P-450, Eur. J. Biochem. 139: 235–246.Google Scholar
  206. 206.
    Samuelsson, B., Granstrom, E., Green. K., and Hamburg, M., 1971, Metabolism of prostaglandins, Ann. N.Y. Acad. Sci. 180: 138–163.Google Scholar
  207. 207.
    Iraelsson, U., Hamburg, M., and Samuelsson, B., 1969, Biosynthesis of 19-hydroxyprostaglandin A,, Eur. J. Biochem. 11: 390–394.CrossRefGoogle Scholar
  208. 208.
    Kupfer, D., Navarro, J., and Piccolo, D. E., 1978, Hydroxylation of prostaglandins AI and E1 by liver microsomal monoxygenase: Characteristics of the enzyme system in the guinea pig, J. Biol. Chem. 253: 2804–2811.PubMedGoogle Scholar
  209. 209.
    Vatsis, K. P., Theoharides, A. D., Kupfer, D., and Coon, M. J., 1982, Hydroxylation of prostaglandins by inducible isozymes of rabbit liver microsomal cytochrome P-450: Participation of cytochrome b5, J. Biol. Chem. 257: 11221–11229.PubMedGoogle Scholar
  210. 210.
    Okita, R. T., Parkhill, L. K., Yasukochi, Y., Masters, B. S. S., Theoharides, A. D., and Kupfer, D., 1981, The w-and (w-1)-hydroxylase activities of prostaglandins A, and E1 and lauric acid by pig kidney microsomes and a purified kidney cytochrome P-450, J. Biol. Chem. 256: 5962–5964.Google Scholar
  211. 211.
    Williams, D. E., Hale, S. E., Okita, R. T., and Masters, B. S. S., 1984, A prostaglandin w-hydroxylase cytochrome P-450 (P-450po,,) purified from lungs of pregnant rabbits, J. Biol. Chem. 259: 4600–4608.Google Scholar
  212. 212.
    Powell, W. S., 1978, w-Oxidation of prostaglandins by lung and liver microsomes: Changes in enzyme activity induced by pregnancy, pseudopregnancy, and progesterone treatment, J. Biol. Chem. 253: 6711–6716.Google Scholar
  213. 213.
    Oliw, E. H., Guengerich, F. P., and Oates, J. A., 1982, Oxygenation of arachidonic acid by hepatic monooxygenases: Isolation and metabolism of four epoxide intermediates, J. Biol. Chem. 257: 3771–3781.PubMedGoogle Scholar
  214. 214.
    Chacos, N., Falck, J. R., Wixtrom, C., and Capdevila, J., 1982, Novel epoxides formed during the liver cytochrome P-450 oxidation of arachidonic acid, Biochem. Biophys. Res. Commun. 104: 916–922.PubMedCrossRefGoogle Scholar
  215. 215.
    Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J. H., 1980, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature 286: 264–265.PubMedCrossRefGoogle Scholar
  216. 216.
    Borgeat, P., and Samuelsson, B., 1979, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187, Proc. Natl. Acad. Sci. USA 76: 2148–2152.PubMedCrossRefGoogle Scholar
  217. 217.
    Capdevila, J., Chacos, N., Werringloer, J., Prough, R. A., and Estabrook, R. W., 1981, Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid, Proc. Natl. Acad. Sci. USA 78: 5362–5366.PubMedCrossRefGoogle Scholar
  218. 218.
    Capdevila, J., Parkhill, L., Chacos, N., Okita, R., Masters, B. S. S., and Estabrook, R. W., 1981, The oxidative metabolism of arachidonic acid by purified cytochrome P450, Biochem. Biophys. Res. Commun. 101: 1357–1363.PubMedCrossRefGoogle Scholar
  219. 219.
    Capdevila, J., Marnett, L. J., Chacos, N., Prough, R. A., and Estabrook, R. W., 1982, Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyeicosatetraenoic acids. Proc. Natl. Acad. Sci. USA 79: 767–770.PubMedCrossRefGoogle Scholar
  220. 220.
    Samuelsson, B., 1980, The leukotrienes: A new group of biologically active compounds including SRS-A, Trends Pharmacol. Sci. 1: 227–230.CrossRefGoogle Scholar
  221. 221.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–357.PubMedCrossRefGoogle Scholar
  222. 222.
    Koop, D. R., Persson, A. V., and Coon, M. J., 1981, Properties of electrophoretically homogenous constitutive forms of liver microsomal cytochrome P-450, J. Biol. Chem. 256: 10704–10711.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Michael R. Waterman
    • 1
  • Maliyakal E. John
    • 1
  • Evan R. Simpson
    • 2
  1. 1.Departments of Biochemistry and Obstetrics and GynecologyUniversity of Texas Health Science CenterDallasUSA
  2. 2.Departments of Biochemistry and Obstetrics and Gynecology, and Cecil H. and Ida Green Center for Reproductive Biology SciencesUniversity of Texas Health Science CenterDallasUSA

Personalised recommendations