Cytochrome Oxidase

A Predictive Marker of Neurodegeneration
  • N. P. Abdollahian
  • A. Cada
  • F. Gonzalez-Lima
  • J. C. de la Torre


Cytochrome oxidase has been used in the past as a marker of neuronal activity. We propose that cytochrome oxidase may also serve as a useful marker for predicting potential neurodegeneration, particularly following chronic brain hypoperfusion. This proposal is based on a series of experiments in rats subjected to mild chronic brain hypoperfusion and tested at determined time points for regional cytochrome oxidase activity, visuo-spatial memory, reactive astrocytosis, neurodegenerative changes and microtubule associated protein 2 (MAP-2). The results of these experiments suggest the following scenario: four weeks following chronic brain hypoperfusion, regional cytochrome oxidase activity is reduced in parallel with spatial memory function although no neurodegenerative changes are seen anywhere in the brain, despite an increased density of astrocytes in the hippocampus. After 8 weeks of ischemia, neurodegenerative changes are still absent but spatial memory remains depressed while the postsynaptic dendritic marker MAP-2 shows loss of immunostaining in the apical dendrites of CA1 neurons (suggesting continued metabolic dysfunction of these neurons). Twelve weeks after brain hypoperfusion, some neurodegenerative signs begin to be seen in CA1 neurons with continued MAP-2 reduction and reactive gliosis. If rats with chronic brain hypoperfusion are kept for 25 weeks, neuronal loss and extended hippocampal neurodegeneration with cortical atrophy can be seen. Neuronal loss and extension of neurodegeneration 25 weeks after chronic brain hypoperfusion are dependent on factors: age of animal, severity of the chronic ischemic insult and of ischemia. We suggest that the chronologic progression of memory dysfunction, gliosis and MAP-2 loss following mild but chronic brain hypoperfusion are due to lowered mitochondrial oxidative phosphorylation and reduced energy metabolism, initially in ischemic-sensitive neurons, such as in CA1. This energy metabolic down-regulation which is reflected by depressed cytochrome oxidase activity in the CA1 region, appears to precede neurodegenerative changes of CA1 neurons by many weeks. Cytochrome oxidase may be an important pathogenetic precursor of neurodegenerative pathology, particularly Alzheimer’s disease which shares many of the anatomic and cognitive deficits seen in the rat model.


Cerebral Blood Flow Cerebral Ischemia Spatial Memory Cytochrome Oxidase Apical Dendrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdollahian, N. P., Cada, A., Kinney, M., Sutherland, R. J., Gonzalez-Lima, F., and de la Torre, J.C., 1997, Chronic brain ischemia produces progressive memory impairment in rats due to a dysfunction in the oxidative energy metabolism, Soc. Neuro. Abstr 23: 832.Google Scholar
  2. Albers, R. W., Siegel, G. J., and Stahl, W. L., 1994, Et: Basic Neurochemistry, Siegel, G. J., Agranoff, B. W., Albers, R. N.. Molinoff, P. B. (Eds) Raven Press, New York,pp: 49–73.Google Scholar
  3. Astrup, J. Sorensen, P. M., and Sorensen, J.R., 1981, Oxygen and glucose consumption related to Na, K transport in canine brain, Stroke 12: 726–730.PubMedCrossRefGoogle Scholar
  4. Ball, M.J., 1977, Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration In the hippocampus with aging and dementia: A quantitative study, Acta Neuropath., 37: 11–118.CrossRefGoogle Scholar
  5. Banali, R.B., Gehrmann, J., and Kreutzberg, G.W., 1996, Early glial reactions to ischemic lesions, Adv. Neurology, 71: 329–337.Google Scholar
  6. Barnes, C.A., 1988, Aging and the physiology of spatial memory, Neurobio. Aging 9: 563–568.CrossRefGoogle Scholar
  7. Barnes, C.A., Nadel, L., and Honig, W.K., 1980, Spatial memory deficits in senescent rats, Can. J. Psychol. 34: 29–39.PubMedCrossRefGoogle Scholar
  8. Baron, J.C., and Marchai, G., 1992, Vieliessement cérébral et cardiovasulaire et metabolisme énergétique, cerebral, Presse Med. 21: 1231–1237.PubMedGoogle Scholar
  9. Beal, M.F., Hyman, B.T., and Koroshetz, W., 1993, Do defects in mitochondria) metabolism underlie the pathology of neurodegenerative diseases, TINS 16: 125–131.PubMedGoogle Scholar
  10. Beatty, W.W., Bierley, R.A., and Boyd, J.G., 1985, Preservation of accurate spatial memory in aged rats, Neurobiol. Aging 6: 219–225.PubMedCrossRefGoogle Scholar
  11. Bennett, C. M., Mlady, G., Fleschner, M., and Rose, G. M., 1996b, Synergy between chronic corticosterone and sodium azide treatments in producing spatial learning deficit and inhibiting cytochrome oxidase activity, Proc. Natl. Acad. Sci. 93: 1330–1334.PubMedCrossRefGoogle Scholar
  12. Bennett, M.C., Mlady, G., Kwon, YW, and Rose, G.M., 1996a, Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase, J. Neurochem. 66: 2606–2611.PubMedCrossRefGoogle Scholar
  13. Berman, R.F., Goldman, H., and Altman, H.J., 1988, Age-related changes in regional cerebral blood flow and behavior in Sprague-Dawley rats, Neurobiol Aging 9: 691–696.PubMedCrossRefGoogle Scholar
  14. Blass, J.P., 1993, Pathophysiology of Alzheimer Syndrome, Neurol. 43: 25–38.Google Scholar
  15. Borowosky, I.W., and Collins, R.C., 1989, Metabolic anatomy of the brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities, J. Comp. Neurol. 288: 401–413.CrossRefGoogle Scholar
  16. Botel, J. P., Senti, M., Nogues, X., Rubies-Prat, J., Roquer, J., Dolhaberriague, L., and Olive, J., 1992, Lipoprotein and apolipoprotein profile in men with ischemic stroke, Stroke 23: 1556–1562.CrossRefGoogle Scholar
  17. Brouillet, E., Hyman, B., Jenkins, B. G., and Henshaw, D. R., 1994, Systemic of local administration of azide produces striatal lesions by an-energy-impairment-induced excitotoxic mechanism, Exp. Neurol. 129: 175–182.PubMedCrossRefGoogle Scholar
  18. Café, C., Torri, C., Gatti, S., Adinolfi, D., Gaetani, P., Rodriguez„ y Baena, R., and Marzatico, F., 1994, Changes in non-synaptosomal and synaptosomal mitochondrial membrane-linked enzymatic activities after transient cerebral ischemia, Neurochem. Res. 19: 1551–55.Google Scholar
  19. Cave, C.B., and Squire, L.R., 1991, Equivalent impairment of spatial and nonspatial memory following damage to the human hippocampus, Hippocampus I: 329–40.Google Scholar
  20. Chagnon, P. Betard, C., Robitaille, Y., Cholette, A., and Gavreau, D., 1995, Distribution of brain cytochrome oxidase activity in various neurodegenerative activities, Neurorep. 6: 711–715.Google Scholar
  21. Chandrasekaran, K., Giordano, t., Brady, D. R., Stoll, J., Martin. L. J., and Rapoport, S. I., 1994 Impairment in mitochondrial cytochrome oxidase genes expression in Alzheimer’s disease, Brain Res. Mol. Brain Res. 24: 336–340.CrossRefGoogle Scholar
  22. Chandrasekaran, K., Hatanpaa, K., Brady, D.R., and Rapoport, S.I., 1996, Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease, Exp. Neurology 142: 80–88.CrossRefGoogle Scholar
  23. Cheng, B., and Mattson, M.P., 1992, Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampus neurons: prevention by NGF:bFGF, Exp. Neurol. 117: 114–123.PubMedCrossRefGoogle Scholar
  24. Clarke, D. D., and Sokoloff, L., 1994, In: Basic Neurochemistry. G. J. Siegel, B. W. Agranoff, R. W. Albers, P.B. Molinoff, (Eds), Raven Press, New York, pp:645–680.Google Scholar
  25. Colton, C.A., and Gilbert, D.L., 1987, Production of superoxide anion by a CNS macrophage, the microglia, FEBS Let. 223: 284–288.CrossRefGoogle Scholar
  26. Couderc, R., Mahieux, F., and Bailleul, S., 1994, Apolipoprotein E4 allele frequency, ischemic cerebrovascular disease and Alzheimer’s disease, Stroke 24: 1416–1417.Google Scholar
  27. Davignon, J., Gregg, R.E., and Sing, C. F., 1988, Apolipoprotein E polymorphism and atherosclerosis, Atherosclerosis, 8: 1–21.Google Scholar
  28. de la Torre, J. C., 1997e, Hemodynamic consequences of deformed microvessels in the brain in Alzheimer’s disease, Ann. N. Y. Acad. Sci. 826: 75–91PubMedCrossRefGoogle Scholar
  29. de la Torre, J. C., Butler, K., Kozlowski, R, Fortin, T., and Saunders, J. K., 1995, Correlates between nuclear magnetic resonance spectroscopy, diffusion wighted imaging and CAI morphometry following chronic brain ischemia, J. Neurosci. Res. 41: 238–245.PubMedCrossRefGoogle Scholar
  30. de la Torre, J. C., and Hachinski, V. (Eds.), 1997, Cerebrovascular Pathology in Alzheimer’s Disease, Ann. N. Y Acad. Sci. 826: pp 1–523.Google Scholar
  31. de la Torre, J. C., and Mussivand, T., 1993, Can disturbed brain microcirculation cause Alzheimer’s disease’?, Neurol. Res. 15: 146–153.PubMedGoogle Scholar
  32. de la Torre, J. C., 1994, Impaired brain microcirculation may trigger Alzheimer’s disease, Neurosci. Behan Res. 18: 397–401CrossRefGoogle Scholar
  33. de la Torre, J. C., Cada, A. E., Nelson, N., Davis, G., Sutherland, R., and Gonzalez-Lima, F., 1997b, Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats, Neurosci. Lett., 223: 165–168.PubMedCrossRefGoogle Scholar
  34. de la Torre, J. C., 1997a, Cerebromicrovascular pathology in Alzheimer’s disease compared to normal aging, Gerontology, 43: 26–43.PubMedCrossRefGoogle Scholar
  35. de la Torre, J. C., and Fortin T., 1994, A chronic physiological rat model of dementia, Behay. Brain Res. 63: 35–40.CrossRefGoogle Scholar
  36. de la Torre, J.C., Fortin T., Park G.A.S., Pappas B.A., and Richard M.T., 1993, Brain blood flow restoration rescues chronically damaged rat CAI neurons, Brain Res. 623: 6–15.PubMedCrossRefGoogle Scholar
  37. de la Torre, J.C., Fortin, T., Park, G., and de Socarraz, H., 19926, Aged but not young rats develop metabolic, memory deficits after chronic brain ischemia, Neurol. Res.,14 Supp.: I77–180.Google Scholar
  38. de la Torre, J.C., Fortin, T., Park, G.A.S., Butler, K.S., Kozlowski, P., Pappas, B.A., de Socarraz, H., Sanders, J.K., and Richard, M.T., 1992a, Chronic cerebrovascular insufficiency induces dementia-like deficits in aged rats, Brain Res. 582: 186–195.PubMedCrossRefGoogle Scholar
  39. de la Torre, J.C., Nelson, N., and Sutherland, R.J., 1996, Pharmacological reversal of memory deficits in aging rats, J. Neurochem., Supp. 2: S11.Google Scholar
  40. de la Torre, J.C., Pappas, B.A., Keyes, M., and Fortin, T., 1996, Progressive neurodegeneration in rat brain after 2-VO or 3-VO. In: Neurodegenerative diseases, Plenum Press: NY pp. 74–84.Google Scholar
  41. De Vellis, J., Wu, D.K., and Kumar, S., 1987, Enzyme inductions and regulation of protein synthesis. In: Federoff S, Vernadakis, A. (eds): Astrocytes, Vol. 2. Academic Press: NY, p 209–237.Google Scholar
  42. Delacourte, A., 1990, General and dramatic glial reaction in Alzheimer’s brains, Neurol. 40: 33–37.CrossRefGoogle Scholar
  43. DiMattia, B.D., and Kesner, R.P., 1988, Spatial cognitive maps: differential role of parietal cortex and hippocampal formation, Behay. Neurosci., 102: 471–480.CrossRefGoogle Scholar
  44. Dimlich, R.V.W., Showers, M.J., and Shipley, M.T., 1990, Densitometric analysis of cytochrome oxidase in ischemic rat brain, Brain Res. 516: 181–191.PubMedCrossRefGoogle Scholar
  45. Ducket, S., 1991, The Pathology of the Aging Nervous System, Lea and Febringer, Philadelphia.Google Scholar
  46. Duffy, P.E., and Rapport, M., 1980, Glial fibrillary acidic protein and Alzheimer’s-type dementia, Neural. 30: 778–782.Google Scholar
  47. Dunnet, S., 1991, Cholinergic grafts, memory and aging, TINS, 14: 371–376.Google Scholar
  48. Eklof, B., and Siesjö, B.K., 1972, The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain, Acta Physiol. Scand., 86: 155–165.PubMedCrossRefGoogle Scholar
  49. Erecinska, M., and Silver, I.A., 1989, ATP and brain function, J. Cerebr. Blood Flow Metab. 9: 2–19.CrossRefGoogle Scholar
  50. Erkinjuntti, T., Haltia, M., Palo, J., Sulkava, R., and Petau, A., 1988, Accuracy of the clinical diagnosis of vascular dementia: a preospective clinical and post-mortem neuropathological study, J. Neurol. Neurosurg. Psvchiat. 51: 1037–44.CrossRefGoogle Scholar
  51. Evans, G., Brennan, P., Skorpanich, M.A., and Held, D., 1984, Cognitive mapping and elderly adults: verbal and location memory for urban landmarks, J. Geront., 39: 452–457.PubMedCrossRefGoogle Scholar
  52. Fitzgerald, M.J.T., 1985, Neuroanatomy: basic and applied. Balliere Tindall: London.Google Scholar
  53. Flicker, C., Bartus, R.T., Crook, T.H., and Ferris, S.H., 1984, Effects of aging and dementia upon recent visuospatial memory, Neurobio. Aging 5: 275–283.CrossRefGoogle Scholar
  54. Frederickson, R.C., 1992, Astroglia in Alzheimer’s disease, Neurobiol. Aging, 14: 239–253.CrossRefGoogle Scholar
  55. Frisoni, G., Geroldi, C., Blanchetti, A., Trabucchi, M., Govoni, S., Franceschini, and G., Calabresi, L., 1994, apolipoprotein E4 allele frequency in vascular dementia and Alzheimer’s disease, Stroke 25: 1703.Google Scholar
  56. Gibson, B.E., and Peterson, C., 1984, Aging decreases oxidative metabolism and the release and synthesis of acetylcholine, J. Neurochem. 37: 978–984.CrossRefGoogle Scholar
  57. Ginsberg, M.D., Mela, L., Wrobel-Kuhl, K., and Reivich, M., 1977, Mitochondrial metabolism following bilateral cerebral ischemia in the gerbil, Ann. Neurology, I: 519–527.CrossRefGoogle Scholar
  58. Gionet, T.X., Thomas, J.D., Warner, D.S., Goodlet, C.R., Wasserman, E.A., and West, J.R., 1991, Forebrain ischemia induces selective behavioral impairments associated with hippocampal injury in rats, Stroke 22: 1040–1047.PubMedCrossRefGoogle Scholar
  59. Giulian, D., Vaca, K., and Corpuz, M., 1993, Brain glia release factors with opposing actions upon neuronal survival, J. Neurosci. 13: 29–37.PubMedGoogle Scholar
  60. Gonzalez-Lima, F., and Garrosa, M., 1991, Quantitative histochemistry of cytochrome oxidase in rat brain, Neuro-sci. Lett. 123: 251–253.CrossRefGoogle Scholar
  61. Graham, D., I., Gentleman, S. M., Lynch, A., and Roberts, G. W., 1995, Distribution of beta-amyloid protein in the brain following severe brain injury, Neuropathol. Appl. Neurobiol. 21: 27–34.Google Scholar
  62. Grubb, R., Raichle, M., Gado, M., Eichling, J., and Hughes, C., 1977, Cerebral blood flow, oxygen utilization and blood volume in dementia, Neurol. 27: 905–910.CrossRefGoogle Scholar
  63. Guthrie, P.B., Segal, M., and Kater, S.B., 1991, Independent regulation of calcium revealed by imaging dendritic spines, Nature 354: 76–80.PubMedCrossRefGoogle Scholar
  64. Hall, Z.W., 1992, An Introduction to Molecular Neurobiology, Sinauer Ass.: MA.Google Scholar
  65. Hao, C., Guilber, L.J., and Federoff, S., 1990. Production of colony stimulating factor-1 (CSF-1) by mouse astro-glia in vitro, J. Neurosci. Res. 27: 314–323.PubMedCrossRefGoogle Scholar
  66. Hevner, R.F., Duff, R.S., and Wong-Riley, M.T.T., 1992, Coordination of ATP production and consumption in brain: parallel regulation of cytochrome oxidase and Na’,KC-ATPase, Neurosci. Lett. 138: 188–192.PubMedCrossRefGoogle Scholar
  67. Hoyer, S., 1991, Abnormalities of glucose metabolism in Alzheimer’s disease, Ann. New York Acad. Sci. 640: 53–58.Google Scholar
  68. Hoyer, S., 1990, Brain glucose and energy metabolism during normal aging, Aging 2: 245–258.PubMedGoogle Scholar
  69. Hoyer, S., and Krier, C., 1986, Ischemia and the aging brain: studies on glucose and energy metabolism in rat cerebral cortex, Neurobio Aging 7: 23–29.CrossRefGoogle Scholar
  70. Hoyer, S., 1996, Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease, Acta Neurol. Scand. Supp. 165: 18–24.Google Scholar
  71. Hsu, M., and Buzsake, G., 1993, Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia, J. Neurosci. 13: 3964–3979.PubMedGoogle Scholar
  72. Ingram, D.K., London, E.D., and Goodrick, C.L., 1981, Age and neurochemical correlates of radial maze performances in rats, Neurobiol. Aging, 2: 41–47.PubMedCrossRefGoogle Scholar
  73. Inoue, N., Korematsu, K., Oyama, T., Yamada, K., Nagahiro, S., and Ushio, Y., 1996, Cytochrome oxidase activity during acute focal ischaemia in rat brain, Acta Neurochir. 138: 1126–1131.PubMedCrossRefGoogle Scholar
  74. lshimaru, H., Takahashi, A., Ikarashi, Y., and Maruyama, Y., 1995, Pentobarbital protects against CA 1 pyramidal cell death but not dysfunction of hppocampal cholinergic neurons following transient ischemia, Brain Res. 673: 112–118.CrossRefGoogle Scholar
  75. Jaspers, R.M.A., Block, F., Heim, C., and Sontag, K.H., Spatial learning is affected by transient occlusion of common carotid arteries (2V0): comparison of behavioral and histopathological changes after 2V0 and fourvessel-occlusion in rats, Neurosci. Lett. 117: 149–53.Google Scholar
  76. Jendroska, K., Cervos-Navarro, J., and Poewe, W., 1993, Deposition of beta-amyloid associated with cerebral hypoxia, Clin. Neuropathol. 12: 252.Google Scholar
  77. Jones, T.H., Morawetz, R.B., Crowell, R.M., Marcoux, F.W., Fitzgibbon, S.J., De Girolami, U., and Ojemann, R.G., 1981, Thresholds of focal cerebral ischemia in awake monkeys, J. Neurosurg. 54: 773–782.PubMedCrossRefGoogle Scholar
  78. Jun, C.D., Choi, B.M., Kim, H.M., and Chung, H.T., 1995, Involvement of protein kinase C during taxol-induced activation of murine peritoneal macrophages, J. Immunol. 154: 6541–7.PubMedGoogle Scholar
  79. Kalaria, R.N., Cohen. D.L., and Premkumar, R.D., 1996, Apolipoprotein E alleles and brain vascular pathology in Alzheimer’s disease, Ann. N.Y Acad. Sci. 777: 266–271.CrossRefGoogle Scholar
  80. Kalaria, R.N., 1992, The blood-brain barrier and cerebral microcirculation, Cerebrovasc. Brain Met. Rev., 4: 226–260.Google Scholar
  81. Kaplan, B., Brint, S., Tanabe, J., Jacewicz, M., Wang, X-J, and Pulsinelli, W., 1991, Temporal thresholds for neo-cortical infarction in rats subjected to reversible focal cerebral ischemia, Stroke, 22: 1032–39.PubMedCrossRefGoogle Scholar
  82. Kettenmann, H., and Ransom, B.R., (ed.), 1995, Neuroglia, Oxford Press: New York.Google Scholar
  83. Kirino, T., 1982, Delayed neuronal death in the gerbil hippocampus, Brain Res. 239: 57–69.PubMedCrossRefGoogle Scholar
  84. Kish, S.J., Bergeron, C., Rajput, A., Dozic, S., Mastrogia-Como, F., Chang, L.J., Wilson, J.M., and Distefano, L. M., Nobrega, J. N., 1992, Brain cytochrome oxidase in Alzheimer’s disease, J. Neurochem. 59: 776–779.Google Scholar
  85. Kish, S.J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L-J., Wilson, J.M., DiStefano, L.M., and Nobrega, J.N., 1992, Brain cytochrome oxidase in Alzheimer’s disease, J. Neurochem. 59: 776–779.PubMedCrossRefGoogle Scholar
  86. Kitagawa, K., Matsumoto, M., Niinobe, M., Mioshiba, K., Hata, R., Ueda, H., Handa, N., Fukunaga, R., Isaka, Y., Kimura, K., and Kamada, T., 1989, Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage, Neuroscience, 31: 401–411.PubMedCrossRefGoogle Scholar
  87. Kiyota, Y., Miyamoto, M., and Nagaoka, A., 1991, Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia, Brain Res. 538: 295–302.PubMedCrossRefGoogle Scholar
  88. Kluver, H., and Bucy, P.C., 1939, Preliminary analysis of function of the temporal lobes in monkeys, Arch. Neurol.Psychiat. 42: 979–1000.CrossRefGoogle Scholar
  89. Konigsmark, B.E., Murphy, E.A., 1970, Neuronal populations in the human brain, Nature 228: 1335–36.PubMedCrossRefGoogle Scholar
  90. Kosunen, O., Talasniemi, S., and Lehtovirta M., 1995, Relation of coronary artherosclerosis and apolipoprotein E genotypes in Alzheimer’s disease, Stroke 26 (5): 743–748.Google Scholar
  91. Krebs, H.A., Williamson, D.H., Bates, M.W., Page, M.A., and Hawkins, R.A., 1971, The role of ketone bodies in caloric homeostasis, Adv. Enzyme Reg. 9: 3880–3883.Google Scholar
  92. Kudo, T., Tada, K., Takeda, M., and Nishimura, T., 1990, Learning impairment and microtubule-associated protein 2 decreases in gerbils under chronic cerebral hypoperfusion, Stroke, 21: 1205–1209.PubMedCrossRefGoogle Scholar
  93. Landfeld, P.W., Hippocampal neurobiological mechanisms of age-related memory dysfunction, Neurobiol. Aging, 9: 571–579.Google Scholar
  94. Lassen, N.A., and Ingvar, D.H., 1980, Blood flow studies in the aging normal brain and in senile dementia, in Amaducci, L., Davison, A.N., Antuono, P., (eds): Aging of the Brain and Dementia. Raven Press: New York pp. 91–98.Google Scholar
  95. Linville, D.G., and Arneri, S.P., 1991, Cortical cerebral blood flow governed by the basal forebrain: age-related impairments, Neurobiol. Aging 12: 503–510.PubMedCrossRefGoogle Scholar
  96. Marcus, D. L., de Leon, M., Goldman, J., Logan, J., Christman, D., Wolf, A., Fowler, J., Hunter, K., Tsai, J., Pearson, J., and Freedman, M.L., 1989, Altered glucose metabolism in microvessels from patients with Alzheimer’s disease, Ann. Neurol. 26: 91–94.PubMedCrossRefGoogle Scholar
  97. Markesberry, W. R., 1997, Oxidative stress hypothesis in Alzheimer’s disease, Free Rad. Biol. Med. 23: 134–147.CrossRefGoogle Scholar
  98. Mattson, M. P., 1997, Advances fuel Alzheimer’s conundrum, Nature Gen. 17: 254–256.CrossRefGoogle Scholar
  99. Mayberg, T.S., Lam, A.M., Matta, B.F., Domino, K.B., and Winn, H.R., 1995, Ketamine does not increase cerebral blood flow velocity or intracranial pressure during isoflurane/nitrous oxide anesthesia in patients undergoing craniotomy, Neurosurg. Anesth. 81: 84–89.Google Scholar
  100. McGrail, K.M., Phillips, J.M., and Sweadner, K.J., 1991, Immunoflourescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase, J. Neurosci., 11: 381–391.PubMedGoogle Scholar
  101. Meier-Ruge, W., Bertoni-Freddari C., and Iwangoff, P., 1994, Changes in brain glucose metabolism as a key to the pathogenesis of Alzheimer’s disease, Gerontol. 40: 246–252.CrossRefGoogle Scholar
  102. Meier-Ruge, W., and Bertoni-Freddari, C., 1996, The significance of glucose turnover in the brain in the pathogenetic mechanisms of Alzheimer’s disease, Rev. in Neurosci. 7 1–19.Google Scholar
  103. Milner, B., 1974, Hemispheric specialization: scope and limits. In F.O. Schmitt and F.G. Worden (Eds.), The Neurosciences: Third study program, MIT Press: Cambridge, pp. 75–89.Google Scholar
  104. Miyazawa, T., Bonnekoh, P., and Hossman, K.A., 1993, Temperature effect on immunostaining of microtubule-asso-ciated protein 2 and synatpophysin after 30 minutes forebrain ischemia in rat, Acta Neuropath, 85(5): 526–32.Google Scholar
  105. Morris, R.G.M., 1984, Developments of a water maze procedure for studying spatial learning in the rat, J. Neurosci. Meth. 11: 47–60.CrossRefGoogle Scholar
  106. Murphy, S., 1993, Asuncytes: Pharmacology and function, Academic Press: NY.Google Scholar
  107. Mutisya, E.M., Bowling, A.C., and Beal, M.F., 1994, Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease, J. Neurochem. 63: 2179–2184.PubMedCrossRefGoogle Scholar
  108. Nagata, K. Buchan, R. J., Yokoyama, E., Kondoh, Y., Sato, M., Terashi, H., Satoh, Y., Watahiki, Y., Senova, M., Hirata, Y., and Hatazawa, J., 1997, Misery perfusion with preserved vascular reactivity in Alzheimer’s disease, Ann. N. Y Acad. Sci. 826: 272–281.Google Scholar
  109. Nakahara, I., Kikuchi, H., Taki, W., Nishi, S., Kito, M., Yonekawa, Y., Goto, Y., and Ogata, N., 1991, Degradation of mitochondria) phospholipids during experimental cerebral ischemia in rats, J. Neurochem. 57: 839–844.PubMedCrossRefGoogle Scholar
  110. Ni, J-W., Matsumoto, K., Li, H-B., Murakami, Y, and Watanabe, H., 1995, Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat, Brain Res. 673: 290–296.PubMedCrossRefGoogle Scholar
  111. Ni, J-W., Ohta, H., Matsumoto, K., and Watanabe, H., 1994, Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats, Brain Res. 653: 231–36.PubMedCrossRefGoogle Scholar
  112. Obrist, W.D., Chivian, E., Cronquist, S., and ingvar, D.H., 1970, Regional cerebral blood flow in senile and presenile dementia, Neurol. 20: 315–22.CrossRefGoogle Scholar
  113. Ohata, M., Sundaram, U., Fredericks, W.R., London, E.D., and Rapoport, S.1., 1981, Regional cerebral blood flow during development and ageing of the rat brain, Brain 104: 319–332.PubMedCrossRefGoogle Scholar
  114. Olsen, G.M., Scheel-Kruger, J., Moller, A., and Jensen, L.H., 1994, Does neuronal damage of CAI related to spatial memory performance of rats subjected to transient forebrain ischemia, Acta Neurol. Scand. 89: 204–209.PubMedCrossRefGoogle Scholar
  115. Olton, D.S., and Papas, B.C., 1979, Spatial memory and hippocampal function. Neuropsychologia, 17: 669–682.PubMedCrossRefGoogle Scholar
  116. Ordy, J.M., Thomas, G.J., Volpe, B.T., Dunlap, W.P., and Colombo, P.M., 1988, An animal model of human-type memory loss based on aging, lesion, forebrain ischemia, and drug studies with the rat, Neurobiol. Aging, 9: 667–683.PubMedCrossRefGoogle Scholar
  117. Owen, O.E., Morgan, A.P., Kemp, H.G., Sullivan, J.M., Herrara, M.G., and Cahill, G.F. Jr., 1967, Brain metabolism during fasting, J. Clin. Invest. 46: 1589–1595.PubMedCrossRefGoogle Scholar
  118. Ozawa, K., Seta, K., Araki, H., and Handa, H., 1967, The effect of ischemia on mitochondrial metabolism, J. Biochem. 61: 512–514.PubMedGoogle Scholar
  119. O’Keefe, J., and Nadel, L., 1978, The hippocampus as a cognitive map. Oxford University Press: London.Google Scholar
  120. Papez, J.W., 1937, A proposed mechanism of emotion, Arch. Neurol. Psychiat. 38: 725–743.CrossRefGoogle Scholar
  121. Pappas, B.A., de la Torre, J.C., Davidson, C., Keyes, M., and Fortin, T., 1996, Chronic reductions of cerebral blood flow in the adult rat: Late emerging CAI cell loss and memory function, Brain Res. 708: 50–58.PubMedCrossRefGoogle Scholar
  122. Park, J.S., Bateman, M.C., and Goldberg, M.P., 1996, Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation, Neurobio. Disease, 3: 215–227.CrossRefGoogle Scholar
  123. Parker, W.D., Jr., Filley, C.M., and Parks, J.K., 1990, Cytochrome oxidase deficiency in Alzheimer’s disease, Neurol. 40: 1302–1303.CrossRefGoogle Scholar
  124. Parker, W.D., Jr., Parks, J., Filley, C.M., and Klein-Schmidt-Demasters, B.K., 1994, Electron transport chain defects in Alzheimer’s disease brain, Neurol. 44: 1090–1096.CrossRefGoogle Scholar
  125. Patel, M.S., 1977, Age-dependent changes in oxidative metabolism in rat brain, J. Geront. 32: 643–646.PubMedCrossRefGoogle Scholar
  126. Perry, E.K., 1986, The cholinergic hypothesis: 10 years on, Brain Med. Bull. 42: 63–69.Google Scholar
  127. Petito, C.K., Morgello, S., Felix, J.C., and Lesser, M.L., 1990, The two patterns of reacitve astrocytosis in postischemic rat brain, J. Cerebr. Blood Flow, 10: 850–859.CrossRefGoogle Scholar
  128. Pulsinelli, W.A., Brierley, J.B., and Plum, F., 1982, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol., 11: 491–498.PubMedCrossRefGoogle Scholar
  129. Rasmusson, D.X., Brandt, J., Martin, D.B., and Folstein, M.F., 1995, Head injury as a risk factor in Alzheimer’s disease, Brain Injury 9: 213–219.PubMedCrossRefGoogle Scholar
  130. Roberts, G.W., Gentleman, S.M., Lynch, A., Murray, L., Landon, M., and Graham, D.I., 1994, Beta amyloid protein depostion in the brain after severe head injury: Implications for the pathogenesis of Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry 57: 419–425.PubMedCrossRefGoogle Scholar
  131. Rogers, R.L., Meyer, J.S., Mortel, K.F., Mahurin, R.K., and Judd, B.W., 1986, Decreased cerebral blood flow precedes multiinfarct dementia, but follows senile dementia of Alzheimer’s type, Neurol. 36: I - 6.Google Scholar
  132. Saunders, A.M., Strittmatter, W.J., and Schmechel, D., 1993, Association of apolipoprotein E allele e4 with lateonset familial and sporadic Alzheimer’s disease, Neurol. 43: 1467–1472.CrossRefGoogle Scholar
  133. Schmidt-Kastner, E., Fliss, H., and Hakim, A.M., 1997, Subtle neuronal death in striatum after short forebrain ischemia in rats detected by in situ end-labeling for DNA damage, Stroke 28: 163–170.PubMedCrossRefGoogle Scholar
  134. Sekhon, L.H.S., Morgan, M.K., Spence, I., Weber, N.C., 1994, Chronic cerebral hypoperfusion and impaired neuronal function in rats, Stroke 25: 1022–27.PubMedCrossRefGoogle Scholar
  135. Sekhon, L.H.S., Spence, I., Morgan, M.K., and Weyer, N.C., 1997, Chronic cerebral hypoperfusion inhibits calcium-induced long-term potentiation in rats, Stroke 28: 1043–1048.PubMedCrossRefGoogle Scholar
  136. Selmen, W.R., Crumrine, R.C., Ricci, A.J., LaManna, J.C., Ratcheson, R.A., and Lust, W.D., 1990, Impaired metabolic recovery with increasing periods of middle cererbral artery occlusion in rats, Stroke 21: 467–71.CrossRefGoogle Scholar
  137. Shaw T.G., Mortel K.F., Meyer J.S., Rogers R.L., Hardenberg J., and Cutaia M.M., 1984, Cerebral blood flow changes in benign aging and cerebrovascular disease, Neurol. 34: 855–862.CrossRefGoogle Scholar
  138. Siesjö, B.K., 1978, Brain energy metabolism, John Wiley and Sons, New York.Google Scholar
  139. Simonian, N.A., and Hyman, B.T., 1995, Functional alterations in neural circuits in Alzheimer’s disease, Neurobiol. Aging 16: 305–309.PubMedCrossRefGoogle Scholar
  140. Simonian, N.A., and Hyman, B.T., 1994, Functional alterations in Alzheimer’s disease: Selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation, J Neuropath. Exp. Neurol. 53: 508–512.PubMedCrossRefGoogle Scholar
  141. Sims, N. R., 1996, Energy metabolism, oxidative stress and neuronal degeneration in Alzheimer’s disease, Neurodegeneration 5: 435–440.PubMedCrossRefGoogle Scholar
  142. Smith, D.H., Okiyama, K., Thomas, M.J., Claussen, B., and McIntosh, T.K., 1991, Evaluation of memory dysfunction following experimental brain injury using the Morris water maze, J. Neurotrauma 8: 259–269.PubMedCrossRefGoogle Scholar
  143. Smith, M.L., 1988, Recall of spatial location by the amnesic patient H. M., Brain Cog. 7: 178–183.CrossRefGoogle Scholar
  144. Sonsalla, P.K., Manzino, L., Sinton, C.M., Liang, C.L., German, D.C., and Zeevalk, G.D., 1997, Inhibition of striatal energy metabolism produces cell loss in the ipsilateral substantia nigra, Brain Res. 773: 223–226.PubMedCrossRefGoogle Scholar
  145. Sparks, D.L., Hunsaker, J.C., Scheff, S., Kryscio, R., Henson, J.L., and Markesberry, W.R., 1990, Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol. Aging 11: 601–607.PubMedCrossRefGoogle Scholar
  146. Squire, L.R., Shimamaru, A.P., and Amaral, D.G., 1986, Memory and hippocampus, In Neural Models of Plasticity, Byrne, J., Berry, W., (eds), Academic Press: New York pp. 208–239.Google Scholar
  147. Sutherland, R.J., Wishaw, I.Q., and Kolb, B., 1988, Contributions of the cingulate cortex to two forms of spatial learning and memory, J. Neurosci. 8: 1863–1872.PubMedGoogle Scholar
  148. Swerdlow, R., Marcus, D.L., Landman, J., Kooby, D., Frey, W., and Freedman, M.L., 1993, Brain glucose metabolism in Alzheimer’s disease, Amer. J. Med. Sci. 308: 141–144.CrossRefGoogle Scholar
  149. Symon, L., Pasztor, E., and Branston, N.M., 1974, The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: An experimental study by the technique of hydrogen clearance in baboons, Stroke 5: 355–364.PubMedCrossRefGoogle Scholar
  150. Szatkowski, M., and Attwell, D., 1994, Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms, TINS, 17: 359–365.PubMedGoogle Scholar
  151. Tachibana, H., Meyer, J.S., Kitagawa, Y., Rogers, R.L., Okayasu, H., and Mortel, K.F., 1984, Effects of aging on cerebral blood flow in dementia compared to normals, J. Am. Geriatr Soc. 32: 114–120.PubMedGoogle Scholar
  152. Tachibana, H., Meyer, J.S., Okayasu, H., Shaw, T.G., Kandula, P., and Rogers, R.L., 1984, Xenon contrast CTCBF scanning of the brain differentiates normal age-related changes from multi-infarct dementia and senile dementia of Alzheimer’s type, J. Geron. 39: 415–23.CrossRefGoogle Scholar
  153. Tanaka, K., Ogawa, N., Asanuma, M., Kondo, Y., and Nomura, M., 1996, Relationship between cholinergic dysfunction and discrimination learning disabilities in Wistar rats following chronic cerebral hypoperfusion, Brain Res. 729: 55–65.PubMedCrossRefGoogle Scholar
  154. Terry, R.D., and Wisniewski, H.M., 1972, Ultrastructure of senile dementia and of experimental analogs, In: Aging and the Brain, ed.: Gaitz, C. M., Raven Press: New York 89–116.Google Scholar
  155. Tsuchiya, T., Sako, K., Yura, S., and Yonemasu, Y., 1992, Cerebral flood flow and histopathological changes following permanent bilateral carotid artery ligation in Wistar rats, Exp. Brain Res. 89: 87–92.PubMedCrossRefGoogle Scholar
  156. Tsuchiya, T., Sako, K., Yura, S., and Yonemasu, Y., 1993, Local cerebral glucose utilisation following acute and chronic bilateral carotid artery ligation in Wistar rats: relation to changes in local cererbral blood flow, Exp. Brain Res. 95: 1–7.PubMedCrossRefGoogle Scholar
  157. Van Hoesen, G.W., and Hyman, B., 1990, Hippocampal formation: anatomy and patterns of pathology in Alzheimer’s disease, Progr. Brain Res. 83: 445–447.CrossRefGoogle Scholar
  158. Venarucci, D., 1994, ApoE phenotype in atheromatous plaques, Stroke 25: 2296–2297.PubMedCrossRefGoogle Scholar
  159. Vibulsreth, S., Hefti, F., Ginsberg, M.D., Dietrich, W.D., and Busto, R., 1987, Astrocytes protect cultured neurons from degeneration induced by anoxia, Brain Res. 422: 303–311.PubMedCrossRefGoogle Scholar
  160. Wakiti, H., Tomimoto, H., and Kimaru, J., 1994, Glial activation and white matter changes in rat brain induced by chronic cerebral hypoperfusion, Acta Neuropath. 87: 484–492.CrossRefGoogle Scholar
  161. Williams, J.H., Errington, M.L., Lynch, M.A., and Bliss, T.V.P., 1989, Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus, Nature, 341: 739–742.PubMedCrossRefGoogle Scholar
  162. Wisniewski. H.M., and Terry, R.D., 1973, Morphology of the aging brain, human and animal, Prog. Brain Res. 40: 167–186.PubMedCrossRefGoogle Scholar
  163. Wong-Riley, M.T.T., 1989, Cytochrome oxidase: an endogenous metabolic marker for neuronal activity, TINS 12: 94–101.PubMedGoogle Scholar
  164. Yager, J.Y., Shuaib, A., and Thomill, J., 1996, The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia, Brain Res. Dey. Brain Res. 93: 143–154.CrossRefGoogle Scholar
  165. Yamaguchi, F., Meyer, J.S., Yamamoto, M., Sakai, F., and Shaw, T., 1980, Noninvasive regional cerebral blood flow measurements in dementia, Arch. Neurol. 37: 410–8.PubMedCrossRefGoogle Scholar
  166. Zemcov, A., Risberg, J. Barclay, L.L., and Blass, J.P., 1984, Diagnosis of Alzheimer’s dementia and multi-infarct dementia by rCBF compared to clinical classification, Monogr. Neural Sci. 2: 104–6.Google Scholar
  167. Zola-Morgan, S., Squire, L.R., and Amaral, D.G., 1986, Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to the CAI field of the hippocampus, J. Neuro-sci. 6: 2950–2967.Google Scholar
  168. Zola-Morgan, S., Squire, L.R., and Amaral, D.G., 1989, Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys, J. Neurosci. 9: 898–913.PubMedGoogle Scholar
  169. Zola-Morgan, S., and Squire, L.R., 1986, Memory impairment in monkeys following lesions limited to the hippo-campus, Behay. Neurosci. 100: 155–160.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • N. P. Abdollahian
    • 1
  • A. Cada
    • 2
  • F. Gonzalez-Lima
    • 2
  • J. C. de la Torre
    • 1
  1. 1.Division of Neurosurgery and Department of NeuroscienceUniversity of New MexicoAlbuquerqueUSA
  2. 2.Institute for NeuroscienceUniversity of Texas, AustinAustinUSA

Personalised recommendations