Skip to main content

Quantitative Histochemistry of Cytochrome Oxidase Activity

Theory, Methods, and Regional Brain Vulnerability

  • Chapter
Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease

Abstract

This chapter explains the theory and methods for the mapping of cytochrome oxidase activity in the brain using quantitative histochemistry. Cytochrome oxidase catalyzes the electron transfer from cytochrome c to oxygen in all higher forms of living organisms. cytochrome oxidase activity can be measured histochemically using diaminobenzidine as the electron donor to reduce cytochrome c. This histochemical reaction is performed in fresh-frozen brains under conditions of linearity, using internal activity standards and quantitative densitometry, to allow quantification of enzymatic activity units. During cellular respiration, this reaction is necessary for ATP synthesis because of its coupling with oxidative phosphorylation. Cytochrome oxidase is critically important to neurons because they depend on oxidative metabolism for energy production. This chapter also reviews the regional brain effects of cytochrome oxidase inhibition. Enhanced vulnerability to cytochrome oxidase inhibition is found in brain regions most often engaged in associative memory functions. It is proposed that this vulnerability may depend on the sustained neuronal metabolic demands that long-term learning and memory imposes on these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. C., 1977, Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neurosci. 2: 141–145.

    Article  CAS  Google Scholar 

  • Aggleton, J. P., ed., 1992, The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction, Wiley-Liss, New York.

    Google Scholar 

  • Ball, M.J., Fisman, M., Hachinski, V., Blume, W., Fox, A., Kral, V.A., Kirshen, A.J., Fox, H., and Merskey, H., 1985, A new definition of Alzheimer’s disease: A hippocampal dementia, Lancet I: 14–16.

    Article  Google Scholar 

  • Beal, M. F., Hyman, B. T., and Koroshetz, W., 1993, Do defects in mitochondria) energy metabolism underlie the pathology of neurodegenerative disorders?, TINS 16 (4): 125–131.

    PubMed  CAS  Google Scholar 

  • Bennett, M. C., Diamond, D. M., Parker, Jr. W. D., Stryker, S. L., and Rose, G. M., 1992a, Inhibition of cytochrome oxidase impairs learning and hippocampal plasticity: A novel animal model of Alzheimer’s disease. In Simpkins, J., Crews, F. T., and Meyer, E. M. (eds.), Alzheimer’s Disease Therapy: A New Generation of Progress, Plenum Press, New York, pp. 485–501.

    Google Scholar 

  • Bennett, M. C., Diamond, D. M., Stryker, S. L., and Parker, Jr. W.D., 1992b, Cytochrome oxidase inhibition: A novel animal model of Alzheimer’s disease, J. Geriat. Psychiat. Neurol. 5: 93–101.

    CAS  Google Scholar 

  • Bennett, M. C., and Rose, G. M., 1992, Chronic sodium azide treatment impairs learning of the Morris water maze, Behay. Neur. Biol. 58: 72–75.

    Article  CAS  Google Scholar 

  • Benzi, G., Arrigoni, E., Dagani, F., Marzatico, F., Curti, D., Manzini, A., and Villa, R.F., 1979, Effect of chronic treat- ment with some drugs on the enzymatic activities of the rat brain, Biochem. Pharmacol. 28: 2703–2708.

    Article  PubMed  CAS  Google Scholar 

  • Biegon, A., and Wolff, M., 1986, Quantitative histochemistry of acetylcholinesterase in rat and human brain postmortem, J. Neurosci. Meth. 16: 39–45.

    Article  CAS  Google Scholar 

  • Blass, J. R, 1993, Pathophysiology of aging, Neurol. Suppl. 4: 25–38.

    Google Scholar 

  • Blass, J. P., Sheu, R. K. F., and Cedarbaum, J. M., 1988, Energy metabolism disorders of the nervous system, Revue Neurologique 144: 543–563.

    PubMed  CAS  Google Scholar 

  • Bloch, V., 1976, Brain activation and memory consolidation. In Rosenzweig, M. R. and Bennett, E. L. (eds.), Neural Mechanisms of Learning and Memory, MIT Press, Cambridge, Massachusetts, pp. 582–590.

    Google Scholar 

  • Braun, K., Scheich, H., Schachner, M., and Heizmann, C.W., 1985, Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch I. auditory and vocal motor systems, Cell Tissue Res. 240: 101–115.

    Article  CAS  Google Scholar 

  • Brauth, S.E., 1990, Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase histochemistry, Brain Res. 508: 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Cada, A., Gonzalez-Lima, F., Rose, G.M., and Bennett, M.C., 1995, Regional brain effects of sodium azide treatment on cytochrome oxidase activity: A quantitative histochemical study, Metab. Brain Disease 10: 303–319.

    Article  CAS  Google Scholar 

  • Chalmers, G.R., and Edgerton, V.R., 1989, Marked and variable inhibition by chemical fixation of cytochrome oxidase and succinate dehydrogenase in single motoneurons, J. Histochem. Cytochem. 3: 899–901.

    Article  Google Scholar 

  • Chandrasekaran, K., Giordano, T., Brady, D.R., Stoll, J., Martin, L.J., and Rapoport, Si, 1994, Impairment in mitochondria) cytochrome oxidase gene expression in Alzheimer’s disease, Molec. Brain Res. 24: 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran, K., Stoll, J., Giordano, T., Atack, J. R., Matocha, M. F., Brady, D. R., and Rapoport, S. I., 1992, Differential expression of cytochrome oxidase (COX) genes in different regions of monkey brain, J. Neurosci. Res. 32: 415–423.

    Article  PubMed  CAS  Google Scholar 

  • Chieco, R, Jonker, A., Melchiorri, C., Vanni, G., and Van Noorden, C.J.F., 1994, A user’s guide for avoiding errors in absorbance image cytometry: A review with original experimental observations, Histochem. J. 26: 1–19.

    PubMed  CAS  Google Scholar 

  • Coomber, R, Crews, D., and Gonzalez-Lima, F., 1997, Independent effects of incubation temperature and gonadal sex on the volume and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination, J. Comp. Neurol. 380: 409–421.

    Article  PubMed  CAS  Google Scholar 

  • Crews, D., Coomber, R, Baldwin, R., Azad, N., and Gonzalez-Lima, F., 1996, Brain organization in a reptile lacking sex chromosomes: effects of gonadectomy and exogenous testosterone, Hormones and Behay. 30: 474–486.

    Article  CAS  Google Scholar 

  • Crews, D., Coomber, P., and Gonzalez-Lima, F., 1997, Effects of age and sociosexual experience on the morphology and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination, Brain Res. 758: 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Curti, D., Giangare, M. C., Redolfi, M. E., Fugaccia, I., and Benzi, G., 1990, Age-related modifications of cytochrome c oxidase activity in discrete brain regions, Mech. Ageing and Dev. 55: 171–180.

    Article  CAS  Google Scholar 

  • Darriet, D., Der, T., and Collins, R.C., 1986, Distribution of cytochrome oxidase in rat brain: studies with diaminobenzidine histochemistry in vitro and [14C]cyanide tissue labeling in vivo, J. Cereh. Blood Flow Metab. 6: 8–14.

    Article  CAS  Google Scholar 

  • De Olmos, J., and Heimer, L., 1977, Mapping of collateral projections with the HRP-method, Neurosci. Left. 6: 107–114.

    Article  Google Scholar 

  • Di Rocco, R.J., Kageyama, G.H., and Wong-Riley, M.T.T., 1989, The relationship between CNS metabolism and cytoarchitecture: A review of 14C-deoxyglucose studies with correlation to cytochrome oxidase histochemistry, Computerized Medical Imaging Graphics, 13: 81–92.

    Article  Google Scholar 

  • Gonzalez-Lima, F., 1992, Brain imaging of auditory learning functions in rats: Studies with fluorodeoxyglucose autoradiography and cytochrome oxidase histochemistry. In Gonzalez-Lima, F. Finkenstaedt, Th., and Scheich, H. (eds.), Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions, Kluwer Academic Publishers, Dordrecht/Boston/London NATO AS1 Series D. Vol. 68: pp 39–109.

    Chapter  Google Scholar 

  • Gonzalez-Lima, F., and Cada, A., 1994, Cytochrome oxidase activity in the auditory system of the mouse: A qualitative and quantitative histochemical study, Neuroscience 63: 559–578.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima, F., and Garrosa, M., 1991, Quantitative histochemistry of cytochrome oxidase in rat brain, Neuroscience Lett. 123: 251–253.

    Article  CAS  Google Scholar 

  • Gonzalez-Lima, F., Helmstetter, F. J., and Agudo, J., 1993, Functional mapping of the rat brain during drinking behavior: A fluorodeoxyglucose study, Physiol. Behay. 54: 605–6 12.

    Google Scholar 

  • Gonzalez-Lima, F., and Jones, D., 1994, Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: A study with calibrated activity standards and metal-intensified histochemistry, Brain Res. 660: 34–49.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima, F., and McIntosh, A.R., 1996, Conceptual and methodological issues in the interpretation of brain-behavior relationships. In R.W. Thatcher, G. Reid Lyon, J. Ramsey and N. Krasnegor (Eds.), Developmental Neuroimaging: Mapping the Devlopment of Brain and Behavior: Academic Press, Orlando, FL, pp. 235–253.

    Google Scholar 

  • Gonzalez-Lima, F., and Scheich, H., 1985, Ascending reticular activating system in the rat: A 2-deoxyglucose study, Brain Res. 344: 70–88.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima, F., and Scheich, H., 1984, Functional activation in the auditory system of the rat produced by arousing reticular stimulation: A 2-deoxyglucose study, Brain Res. 299: 201–214.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima, F., Valla, J., and Matos-Collazo, S., 1997, Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the human inferior colliculus in control and Alzheimer’s patients, Brain Res. 752: 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Harley, C.A., and Bielajew, C.H., 1992, A comparison of glycogen phosphorylase and cytochrome oxidase histochemical staining in rat brain, J. Comp. Neurol. 322: 377–389.

    Article  PubMed  CAS  Google Scholar 

  • Hess, H. H., and Pope, A., 1953, Ultramicrospectrophotometric determination of cytochrome oxidase for quantitative histochemistry, J. Biol. Chem. 204: 295–306.

    PubMed  CAS  Google Scholar 

  • Hevner, R. F., Duff, R. S., and Wong-Riley, M. T. T., 1992, Coordination of ATP production and consumption in brain: parallel regulation of cytochrome oxidase and Na+, K+-ATPase, Neurosci. Lett. 138: 188–192.

    Article  PubMed  CAS  Google Scholar 

  • Hevner, R.F., Liu, S., and Wong-Riley, M.T.T., 1993, An optimized method for determining cytochrome oxidase activity in brain tissue homogenates, J. Neurosci. Meth. 50: 309–319.

    Article  CAS  Google Scholar 

  • Hevner, R. F., and Wong-Riley, M. T. T., 1989, Brain cytochrome oxidase: Purification, antibody production, and immunohistochemical/histochemical correlations in the CNS, J. Neurosci. 9: 3884–3898.

    PubMed  CAS  Google Scholar 

  • Hovda, D.A., Chugani, H.T., Villablanca, J.R., Badie, B., and Sutton, R.L., 1992, Maturation of cerebral oxidative metabolism in the cat: a cytochrome oxidase histochemistry study, J. Cereh. Blood Flow Metah. 12: 1039–1048.

    Article  CAS  Google Scholar 

  • Hyde, G.E., and Durham, D., 1990, Cytochrome oxidase response to cochlea removal in chick auditory brainstem neurons, J. Comp. Neurol. 297: 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, G.E., and Durham, D., 1994, Rapid increase in mitochondrial volume in nucleus magnocellularis neurons following cochlea removal, J. Comp. Neurol. 339: 27–48.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D., Gonzalez-Lima, F. Crews, D., Galef, B.G., and Clark, M.M., 1997, Effects of intrauterine position on the metabolic capacity of the hypothalamus of female gerbils, Physiol. Behay. 61: 513–519, 1997.

    Article  CAS  Google Scholar 

  • Kageyama, G.H., and Robertson, R.T., 1993, Relationships between neuromorphogencsis and cytochrome oxidase (C.O.) activity in rat auditory and visual cortices, hippocampus and cerebellum as demonstrated with metal-intensified C.O. histochemistry, Soc. Neurosci. Abstr 19: 1711.

    Google Scholar 

  • Kish, S.J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L., Wilson, J.M., DiStefano, L.M., and Nobrega, J.N., 1992, Brain cytochrome oxidase in Alzheimer’s disease, J. Neurochem. 59: 776–779.

    Article  PubMed  CAS  Google Scholar 

  • Kugler, R, Vogel, S., Volk., H., and Schiebler, T.H., 1988, Cytochrome oxidase histochemistry in the rat hippocampus: A quantitative metholodological study, Histochem. 89: 269–275.

    CAS  Google Scholar 

  • Liu, Y., Gu, Q., and Cynader, M.S., 1993, An improved staining technique for cytochrome C oxidase, J. Neurosci. Meth. 49: 181–184.

    Article  CAS  Google Scholar 

  • Magistretti, P.J., and Pellerin, L., 1996, Cellular bases of brain energy metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes, Cerebral Cortex 6: 50–6 I.

    Google Scholar 

  • Marier, C.A., Wilczynski, W., and Gonzalez-Lima, F., 1992, Metabolic mapping using cytochrome oxidase histochemistry in frog brain areas associated with auditory processing and reproductive behavior, Soc. Neurosci. Abstr. 18: 882.

    Google Scholar 

  • Mecocci, R, MacGarvey, U., and Beal, M. F., 1994, Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease, Ann. Neural. 36: 747–751.

    Article  CAS  Google Scholar 

  • Miller, R.J., 1991, The control of neuronal Ca’’ homeostasis, Prog. Neurobiol. 37: 255–285.

    Article  PubMed  CAS  Google Scholar 

  • Mutisya, E.M., Bowling, A.C., and Beal, M.F., 1994, Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease, J. Neurochem. 63: 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  • Nobrega, J. N., 1992, Brain metabolic mapping and behaviour: Assessing the effects of early developmental experiences in adult animals. In Gonzalez-Lima, F., Findenstaedt, Th., and Scheich, H. (eds.), Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, NATO AS1 Series D, Vol. 68: pp. 125–149.

    Chapter  Google Scholar 

  • Nobrega, J. N., Raymond, R., DiStefano, L., and Burnham, W. M., 1993, Long-term changes in regional brain cytochrome oxidase activity induced by electroconvulsive treatment in rats, Brain Res. 605: l-8.

    Google Scholar 

  • Olton, D. S., Wible, C. G., Pang, K., and Sakurai, Y., 1989, Hippocampal cells have mnemonic correlates as well as spatial ones, P.rychobio. 17: 228–229.

    Google Scholar 

  • Parker, W.D., Jr., Filley, C.M., and Parks, J.K., 1990, Cytochrome oxidase deficiency in Alzheimer’s disease, Neurol. 40: 1302–1303.

    Article  Google Scholar 

  • Parker, W.D., Jr., Mahr, N.J., Filley, C.M., Parks, J.K., Hughes, M.A., Young, D.A. and Cullum, C.M., 1994a, Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease, Neurol. 44: 1086–1090.

    Article  Google Scholar 

  • Parker, W.D., Jr., Parks, J., Filley, C.M., and Kleinschmidt-DeMasters, B.K., 1994b, Electron transport chain defects in Alzheimer’s disease brain, Neurol. 44: 1090–1096.

    Article  Google Scholar 

  • Partridge, R.S.; Monroe, S.M.; Parks, J.K.; Johnson, K.; Parker, W.D. Jr.; Eaton, G.R., and Eaton, S.S., 1994, Spin trapping of azidyl and hydroxyl radicals in azide-inhibited submitochondrial particles, Arch. Biochem. and Biophysics 310 (1): 210–217.

    Article  CAS  Google Scholar 

  • Poremba, A., Jones, D., and Gonzalez-Lima, F., 1997, Metabolic effects of blocking tone conditioning on the rat auditory system, Neurobiol. Learning Mem. 68: 154–171.

    Article  CAS  Google Scholar 

  • Schofield, B.R., and Cant, N.B., 1991, Organization of the superior olivary complex in the guinea pig. L Cytoarchitecture, cytochrome oxidase histochemistry, and dendritic morphology, J. Comp. Neurol. 314: 645–670.

    Article  PubMed  CAS  Google Scholar 

  • Seligman, A.M., Karnovsky, M.J., Wasserkrug, H.L., and Hanker, J.S., 1968, Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB), J. Cell Biol. 38: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, M. S., and Tootell, R. B. H., 1987, Modified technique for cytochrome oxidase histochemistry: Increased staining intensity and compatibility with 2-deoxyglucose autoradiography, J Neurosci. Meth. 19: 1–10.

    Article  CAS  Google Scholar 

  • Sokoloff, L., 1989, Circulation and energy metabolism of the brain. In G.J. Siegel, B.W. Agranoff, R.W. Albers, and Molinoff, P., (Eds.), Basic Neurochemistry. (pp. 471–495 ). Boston: Little Brown.

    Google Scholar 

  • Sokoloff, L., 1992, Imaging techniques in studies of neural functions. In Gonzalez-Lima, F., Finkenstaedt, T., and Scheich H., (Eds.), Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions. NATO ASI Series, Vol. D68. (pp. 1–37 ). Dordrecht/Boston/London: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Stoward, P.J., 1980, Criteria for the validation of quantitative histochemical enzyme techniques. In Trends in Enzyme Histochemisny and Cytochemistry, Ciba Foundation, Excerpta Medica, Amsterdam, pp. 11–31.

    Google Scholar 

  • Van Raamsdonk, W., Smit-Onel, M., Donsellaar, Y., and Diegenbach, P., 1987, Quantitative cytochemical analysis of cytochrome oxidase and succinate dehydrogenase activity in spinal neurons, Acta Histochem. 81: 129–141.

    Article  PubMed  Google Scholar 

  • Wharton, D.C., and Tzagoloff, A., 1967, Cytochrome oxidase from beef heart mitochondria, Methods of Enzvmolop, 10: 245–250.

    CAS  Google Scholar 

  • Wikström, M., Krab, K., and Saraste, M., 1981, Cytochrome Oxidase: A Synthesis, Academic Press, New York.

    Google Scholar 

  • Wong-Riley, M.T., Hevner, R.F., Cutlan, R., Eamest, M., Egan, R., Frost, J., and Nguyen, T., 1993, Cytochrome oxidase in the human visual cortex: distribution in the developing and the adult brain, Vis. Neurosci., 10.41–58.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T., 1989, Cytochrome oxidase: an endogenous metabolic marker for neuronal activity, TINS, 12: 94 — 101.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., 1979, Changes in monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry, Brain Res. 171: 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., Merzenich, M. M., and Leake, P. A., 1978, Changes in endogenous enzymatic reactivity to DAB induced by neuronal inactivity, Brain Res. 141: 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., and Riley, D. A., 1983, The effect of impulse blockage on cytochrome oxidase activity in the cat visual system, Brain Res. 261: 185–193.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gonzalez-Lima, F., Cada, A. (1998). Quantitative Histochemistry of Cytochrome Oxidase Activity. In: Gonzalez-Lima, F. (eds) Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9936-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9936-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9938-5

  • Online ISBN: 978-1-4757-9936-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics