Freeze-Drying of Biological Materials: Some Physical and Engineering Aspects

  • Terence W. G. Rowe
Part of the The International Cryogenics Monograph Series book series (INCMS)

Abstract

Decay in Nature. The principal external agents of decay or destruction in nature are erosion, corrosion, oxidation, thermal expansion and contraction, enzymic action, the growth of microbes and moulds, and attack by predators. Also, living organisms have their own life cycles—they “age and die and heaven knows why.” The remedies against physical damage and chemical action (of which oxidation is a special case) are straightforward in principle, if sometimes difficult to apply: so also is protection from predators. Enzymes are inactivated by heat which can also destroy microorganisms. Both are also vulnerable to changes in electrolyte and hydrogen ion concentration (pH), freezing, drying, and irradiation. Pickling in vinegar is a combination of heat and pH change. Jam making combines heat and dehydration because the sugar reduces the available water. But suppose it is the bacteria, yeasts, moulds, and viruses themselves that we wish to preserve—any method that destroys them is immediately excluded.

Keywords

Water Vapour Biological Material Residual Moisture Rotary Pump Residual Moisture Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grant, N. H., “The biological role of ice,” Discovery (London), 27, no. 8, 26–30 (1966).Google Scholar
  2. 2.
    Hirsch, M., “Drying and freezing,” Refrig. Engng., 51, 331–334, 334, 366, 368 (1946).Google Scholar
  3. 3.
    Greaves, R. I. N., “The Preservation of Proteins by Drying” (Medical Research Council Special Report Series no. 258) H.M.S.O., London (1946).Google Scholar
  4. 4.
    Bradford, P. and Briggs, S. W., “Jet spray drying,” Chem. Engng. Progr., 59, no. 3, 76–80 (1963).Google Scholar
  5. 5.
    Annear, D. I., “The preservation of bacteria by drying in peptone plugs,” J. Hyg., Camb., 54, 487–508 (1956).CrossRefGoogle Scholar
  6. 6.
    Annear, D. I., “Observations on drying bacteria from the frozen and from the liquid state,” Aust. J. Exp. Biol. Med. Sci., 36, 211–222 (1958).CrossRefGoogle Scholar
  7. 7.
    MacKenzie, A. P. and Shewan, J. M., “Possible mechanisms for increased viability using an Isothermal Dryer,” Ministry of Technology, T 68/27/2 (1968).Google Scholar
  8. 8.
    Meryman, H. T., “Drying of living mammalian cells,” Ann. N. Y. Acad. Sci., 85, 729–734 (1960).CrossRefGoogle Scholar
  9. 9.
    Meryman, H. T. and Kafig, E., “Survival of spermatozoa following drying,” Nature (London), 184, 470–471 (1959).CrossRefGoogle Scholar
  10. 10.
    Greaves, R. I. N., “Recent advances in freeze-drying,” J. Pharm. Pharmac., 14, 621–640 (1962).CrossRefGoogle Scholar
  11. 11.
    Rey, L. R., “Un développement nouveau de la lyophilisation: la cryodessiccation des systèmes non aqueux,” Experientia, 21, 241–246 (1965).CrossRefGoogle Scholar
  12. 12.
    Rey, L. R., Dousset, M., and Chauffard, F., “Les lyophilisations complexes,” (Rey, L. R., ed.) in Advances in Freeze-Drying, pp. 89–94, Hermann, Paris (1966).Google Scholar
  13. 13.
    Jensen, W. A., “Freeze Substitution and Freeze-Drying,” in Botanical Histochemistry, pp. 100–127, Freeman, U.S.A. (1962).Google Scholar
  14. 14.
    Freeman, R. R., Auro, M. A., Dashiell, J. R., Murphy, J. E., Oshrine, I., and Smith, R. F., “Drying viable biological materials by solvent extraction and azeotropic distillation,” Chem. Eng. Progr., 53, no. 12, 590–592 (1957).Google Scholar
  15. 15.
    Robson, E. M. and Rowe, T. W. G., “The physics of secondary drying,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 146–166, Blackwell, Oxford (1960).Google Scholar
  16. 16.
    Flosdorf, E. W., Freeze-Drying, Reinhold Publishing Corp., New York (1949).Google Scholar
  17. 17.
    Harris, R. J. C. (ed.), Biological Applications of Freezing and Drying, Academic Press, New York (1954).Google Scholar
  18. 18.
    Parkes, A. S. and Smith, A. U. (eds.), Recent Research in Freezing and Drying, Blackwell, Oxford (1960).Google Scholar
  19. 19.
    Rey, L. R. (ed.), Traité de la Lyophilisation, Hermann, Paris (1960).Google Scholar
  20. 20.
    Rey, L. R. (ed.), Progrès Récents en Lyophilisation, Hermann, Paris (1962).Google Scholar
  21. 21.
    Rey, L. R. (ed.), Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, Hermann, Paris (1964).Google Scholar
  22. 22.
    Rey, L. R. (ed.), Advances in Freeze-Drying, Hermann, Paris (1966).Google Scholar
  23. 23.
    Cotson, S. and Smith, D. B. (eds.), Freeze-Drying Foodstuffs, Based on a Symposium at the Borough Polytechnic, London, Columbine Press, Manchester (1963).Google Scholar
  24. 24.
    Meryman, H. T., “Freeze-Drying,” (Meryman, H. T., ed.) in Cryobiology, pp. 609–663, Academic Press, New York (1966).Google Scholar
  25. 25.
    Kramers, H. and Stemerding, S., “The sublimation of ice in vacuum,” Appl. Scient. Res., A 3, 73–82 (1951).Google Scholar
  26. 26.
    Carman, P. C., “Molecular distillation and sublimation,” Trans. Faraday Soc., 44, 529–536 (1948).CrossRefGoogle Scholar
  27. 27.
    Carman, P. C., “Some basic principles of freeze-drying and molecular distillation,” in Freeze-Drying of Foods, Proceedings of a Conference Sponsored by the Quartermaster Food and Container Institute for the Armed Forces, Chicago, pp. 77-84, National Academy of Sciences, Washington, D.C. (1962).Google Scholar
  28. 28.
    Schrage, R. W., A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York (1953).Google Scholar
  29. 29.
    Loeb, L. B., The Kinetic Theory of Gases, 2nd ed., p. 99, McGraw-Hill Book Co. Inc., New York (1934).Google Scholar
  30. 30.
    Kramers, H., “Rate Controlling Factors in Freeze-drying”, Fundamental Aspects of the Dehydration of Foodstuffs, Soc. Chem. Ind. Conference, pp. 57-66 (1959).Google Scholar
  31. 31.
    Luyet, B. J., “Effects of freezing rates on the structure of freeze-dried materials and on the mechanism of rehydration,” in Freeze-Drying of Foods, Proceedings of a Conference Sponsored by the Quartermaster Food and Container Institute for the Armed Forces, Chicago, pp. 194-211, National Academy of Sciences, Washington, D.C. (1962).Google Scholar
  32. 32.
    Neumann, K. H., “Freeze-drying of foodstuffs,” L. Rey (ed.), in Progrès Récents en Lyophilisation, pp. 107–126, Hermann, Paris (1962).Google Scholar
  33. 33.
    Stephenson, J. L., “Fundamental physical problems in the freezing and drying of biological materials,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 121–145, Blackwell, Oxford (1960).Google Scholar
  34. 34.
    Harper, J. C. and Tappel, A. L., “Freeze-drying of food products,” Adv. Food Res., 7, 172–232 (1957).Google Scholar
  35. 35.
    Charm, S. E., “Freeze-drying,” in The Fundamentals of Food Engineering, pp. 359-381, Avi Publishing Co. Inc., Westport, Conn. (1963).Google Scholar
  36. 36.
    Harper, J. C., “Transport properties of gases in porous media at reduced pressures with reference to freeze-drying,” A. I. Ch. E. J., 8, 298–302 (1962).CrossRefGoogle Scholar
  37. 37.
    Rowe, T. W. G., The Freeze-Drying of Food: A Review of the Principles, Conference on Drying, Institute of Fuel, Republic of Ireland Group, Dublin, May, 1963.Google Scholar
  38. 38.
    Rowe, T. W. G., “Energy, mass transfer and economy in large scale freeze-drying,” in Rey, L.R., ed., Aspects théoriques et industriels de la lyophilisation: Researches and Development in Freeze-Drying, pp. 141–170, Hermann, Paris (1964.)Google Scholar
  39. 39.
    Saravacos, G. D. and Stinchfield, R. M., “Effect of temperature and pressure on the sorption of water vapor by freeze-dried food materials,” J. Food Sci., 30, 779–786 (1965).CrossRefGoogle Scholar
  40. 40.
    Triebes, T. A. and King, C. J., “Factors influencing the rate of heat conduction in freeze-drying,” I. and E. C. Process Design and Development, 5, 430–436 (1966).CrossRefGoogle Scholar
  41. 41.
    Ginnette, L. F., Graham, R. P., and Morgan, A. I., Freeze-Drying Rates, 5th Nat. Symp. Vacuum Tech. Trans., pp. 268-273 (1958).Google Scholar
  42. 42.
    Peck, R. E., Engineering Studies on the Freeze-drying of Foods, Quartermaster Food and Container Institute for the Armed Forces, Chicago (1960), Final report. Contract No. DA 19-129-QM 1366.Google Scholar
  43. 43.
    Hackenberg, V., “Some fundamental and technical aspects of freeze-drying,” (Rey, L. R., ed), in Aspects théoriques et industriels de la lyophilisation: Researches and Development in Freeze-Drying, pp. 127–139, Hermann, Paris (1964).Google Scholar
  44. 44.
    Neumann, K. H., “Les Problèmes de Mesure et de Réglage en Lyophilisation,” (Rey, L., ed.), in Traité de la Lyophilisation, pp. 185–194, Hermann, Paris (1960).Google Scholar
  45. 45.
    Neumann, K. H. and Hackenberg, V., “Considérations sur la lyophilisation industrielle,” (Journées du Vide de Printemps May 5–6, 1960) Vide, 16, no. 91, 25–31 (1961).Google Scholar
  46. 46.
    Rieutord, L. M. A., U.S. Patent 3,192,643, Filed France, January, 1961 (1965).Google Scholar
  47. 47.
    Rey, L. R., “Procédé et dispositif pour le contrôle et la régulation de la congelation et du dégel de différentes substances et notamment pour le contrôle et la régulation d’opérations de congélation-dessiccation,” Brevets d’invention du Centre National de la Recherche Scientifique, Paris (1959).Google Scholar
  48. 48.
    Rey, L. R., “Automatic regulation of the freeze-drying of complex systems,” Biodynamica, 8, 241–260 (1961).Google Scholar
  49. 49.
    Rieutord, L., “Caractéristiques générales des appareils industriels à Lyophiliser,” (Rey, L., ed.), in Traité de la Lyophilisation, pp. 141–176, Hermann, Paris (1960).Google Scholar
  50. 50.
    Hamilton, L. H., U.S. Patent 3, 230,633 (1966).Google Scholar
  51. 51.
    Mellor, J. D., “Vapour transfer in the course of freeze-drying,” (Rey, L. R., ed.), in Advances in Freeze-Drying, pp. 75–88, Hermann, Paris (1966).Google Scholar
  52. 52.
    Levinson, S. O. and Oppenheimer, F., U.S. Patent 2,435,503, Filed September, 1943 (1948).Google Scholar
  53. 53.
    Treffenberg, L., “A method of freeze-drying of histological preparations,” Ark. Zool. 4, 295–296 (1953).Google Scholar
  54. 54.
    Jensen, W. A., “A new approach to freeze-drying of tissue,” Exp. Cell Res. 7, 572–574 (1954).CrossRefGoogle Scholar
  55. 55.
    Mink, W. H. and Saschel, G. F., “Evaluation of freeze-drying mechanism using mathematical models,” in Freeze-Drying of Foods, Proceedings of a Conference Sponsored by the Quartermaster Food and Container Institute for the Armed Forces, Chicago, pp. 84-92, National Academy of Sciences, Washington, D.C. (1962).Google Scholar
  56. 56.
    Barrer, R. M., Diffusion In and Through Solids, University Press, Cambridge (1951).Google Scholar
  57. 57.
    Magnussen, O. M., “Design of an apparatus for the measurement of water vapour diffusion through porous goods in vacuum,” Bull. Int. Inst. Refrig. Annexe 2, p. 213 (1966).Google Scholar
  58. 58.
    Lafuente, B. and Pinago, F., “Moisture-sorption isotherms for some freeze-dried products,” Rev. Agroquim. Technol. Alimentos, 6, 113–117 (1966).Google Scholar
  59. 59.
    Meryman, H. T., “Sublimation freeze-drying without vacuum,” Science, 130, 628–629 (1959).CrossRefGoogle Scholar
  60. 60.
    Meryman, H. T., U.S. Patent 3,096,163, Filed August, 1960 (1963).Google Scholar
  61. 61.
    Palmer, R. T., U.S. Patent 2,480,954, Filed May, 1944 (1949).Google Scholar
  62. 62.
    Lind, V. W. and Lind, D. C., U.S. Patent 3,218,727, Filed July, 1962 (1965).Google Scholar
  63. 63.
    Lewin, L. M. and Mateles, R. I., “Freeze drying without vacuum: a preliminary investigation,” Food Technol. 16, No. 1, 94–96 (1962).Google Scholar
  64. 64.
    Smutny, F., [“Freeze-dehydration without vacuum,”] Prům. Potravin, 16, 257–259 (1965).Google Scholar
  65. 65.
    Woodward, T. H., Study of Vapour Removal Systems in Dehydration of Food Products Having Piece or Block Conformation, Quartermaster Food and Container Institute for the Armed Forces, Chicago (1961).Google Scholar
  66. 66.
    Folsom, T. R., U.S. Patent 2,411,152, Filed May, 1941 (1946).Google Scholar
  67. 67.
    Reidel, L. von, “Calorimetric experiments on the freezing of meat,” Kältetechnic, 9, Heft 2, 38 (1957).Google Scholar
  68. 68.
    Reidel, L. von, “Calorimetric experiments on the freezing of egg white and egg yolk,” Kältetechnic, 9, Heft 11, 342 (1957).Google Scholar
  69. 69.
    MacKenzie, A. P., “Basic principles of freeze-drying for Pharmaceuticals,” Bull. Parent Drug Assn., 20, 101–129 (1966).Google Scholar
  70. 70.
    Rey, L. R. and Bastien, M.-C., “Biophysical aspects of freeze-drying,” in Freeze-drying of Foods, Proceedings of a Conference Sponsored by the Quartermaster Food and Container Institute of the Armed Forces, Chicago, pp. 25-42, National Academy of Sciences, Washington, D.C. (1962).Google Scholar
  71. 71.
    MacKenzie, A. P., “The ‘Collapse Phenomenon’” in The Freeze-Drying Process, Cryobiology 3, 387 (1967).Google Scholar
  72. 72.
    MacKenzie, A. P. and Luyet, B. J., “A Relationship Between the Behavior of a Frozen Solution upon Freeze-drying and its Tendency to Recrystallize” 9th Annual Meeting of the Biophysical Society, San Francisco, Calif., February 24-26, 1965.Google Scholar
  73. 73.
    MacKenzie, A. P. and Luyet, B. J., “Temperatures at which the Freeze-drying of Mixed Aqueous Solutions Undergoes a Change in Mechanism. Effect of Composition,” Cryobiology 2, 29 (1965).Google Scholar
  74. 74.
    MacKenzie, A. P., Zagorski, M. A., and Luyet, B. J., “Mode of Vapour Transport in the Freeze-Drying of KC1 Solutions,” Cryobiology 2, 29 (1965).Google Scholar
  75. 75.
    Muggleton, P. W., “The preservation of cultures,” (Hockenhull, D. J. D., ed.), in Progress in Industrial Microbiology, Vol. 4, pp. 189–214, Heywood, London (1963).Google Scholar
  76. 76.
    Fry, R. M. and Greaves, R. I. N., “The survival of bacteria during and after drying,” J. Hyg., Camb., 49, 220–246 (1951).CrossRefGoogle Scholar
  77. 77.
    Obayashi, Y., “The Preservation of B. C. G.,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 221–228, Blackwell, Oxford (1960).Google Scholar
  78. 78.
    Muggleton, P. W., “Freeze-drying of bacteria with special reference to B. C. G.,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 229–237, Blackwell, Oxford (1960).Google Scholar
  79. 79.
    Scott, W. J., “A mechanism causing death during storage of dried microorganisms,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 188–202, Blackwell, Oxford (1960).Google Scholar
  80. 80.
    Fry, R. M., “Freezing and drying of bacteria,” (Meryman, H. T., ed.,) in Cryobiology, pp. 665–696, Academic Press, New York (1966).Google Scholar
  81. 81.
    Davies, J. D., “Freeze-drying biological materials,” Process Biochemistry, 3, Part 1, pp. 11–21 Part 2, pp. 48-52 (1968).Google Scholar
  82. 82.
    Greiff, D. and Rightsel, W., “Freezing and freeze-drying of viruses,” (Meryman, H. T., ed.) in Cryobiology, pp. 697–728, Academic Press, New York (1966).Google Scholar
  83. 83.
    Greiff, D. and Rightsel, W. A., “Stabilities of suspensions of viruses after freezing or drying by vacuum sublimation and storage,” Cryobiology, 3, 432–444 (1967).CrossRefGoogle Scholar
  84. 84.
    Rightsel, W. A. and Greiff, D., “Freezing and freeze-drying of viruses,” Cryobiology, 3, 423–431 (1967).CrossRefGoogle Scholar
  85. 85.
    Bird, K., Selected Writings on Freeze-drying of Foods, U.S. Department of Agriculture, Washington, D.C. (1964).Google Scholar
  86. 86.
    Great Britain, Ministry of Agriculture, Fisheries, and Food, (Hanson, S. W. F., ed.) The Accelerated Freeze-drying (AFD) Method of Food Preservation, H.M.S.O., London (1961).Google Scholar
  87. 87.
    Goldblith, S. A., “Freeze-dehydration of foods,” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 555–572, Hermann, Paris (1964).Google Scholar
  88. 88.
    Goldblith, S. A. and Karel M., “Stability of freeze-dried foods,” (Rey, L. R., ed.) in Advances in Freeze-Drying, pp. 191–210, Hermann, Paris (1966).Google Scholar
  89. 89.
    Goldblith S. A., Karel, M., and Lusk, G., “The role of food science and technology in the freeze dehydration of foods,” (Rey, L., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 527–553, Hermann, Paris (1964).Google Scholar
  90. 90.
    Draudt, H. N., Enzymic Activity in Freeze-Dried Foods, Quartermaster Food and Container Institute for the Armed Forces, Chicago (1962) Final report. Contract DA 19-129-QM 1503.Google Scholar
  91. 91.
    Kuprianoff, J., “Fundamental and practical aspects of the freezing of foodstuffs, (Rey, L., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 497–517, Hermann, Paris (1964).Google Scholar
  92. 92.
    Kuprianoff, J., “Preservation and stability of frozen foods,” (Rey, L. R., ed.) in Advances in Freeze-Drying, pp. 147–164, Hermann, Paris (1966).Google Scholar
  93. 93.
    Lund, D. B., Fennema, O., and Powrie, W. D., “Rotation apparatus for shell-freezing,” Cryobiology, 5, 26–28 (1968).CrossRefGoogle Scholar
  94. 94.
    Rey, L. R., “Study of the freezing and drying of tissues at very low temperatures,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 40–62, Blackwell, Oxford (1960).Google Scholar
  95. 95.
    Greaves, R. I. N., “Theoretical aspects of drying by vacuum sublimation,” (Harris, R. J. C, ed.) in Biological Applications of Freezing and Drying, pp. 87–127, Academic Press, New York (1954).Google Scholar
  96. 96.
    Rey, L. R., “Thermal analysis of eutectics in freezing solutions,” Ann. N.Y. Acad. Sci., 85, Art. 2, pp. 510–534 (1960).CrossRefGoogle Scholar
  97. 97.
    Davies, J. D., “Thermal analysis in freezing and freeze-drying,” (Rey, L., ed.) in Advances in Freeze-Drying, pp. 9–20, Hermann, Paris (1966).Google Scholar
  98. 98.
    Greaves, R. I. N., “Centrifugal vacuum freezing,” Nature (London), 153, 485–487 (1944).CrossRefGoogle Scholar
  99. 99.
    Verma, N. S. and Rowe, T. W. G., “The breakage of glass ampoules during freeze-drying,” Vacuum, 9, 21–27 (1959).CrossRefGoogle Scholar
  100. 100.
    Levinson, S. O. and Oppenheimer, F., U.S. Patent 2,533,125, Filed February, 1946 (1950).Google Scholar
  101. 101.
    Greaves, R. I. N., “High vacuum spray freeze-drying,” Vide, 17, no. 102, pp. 549–559 (1962).Google Scholar
  102. 102.
    Guillaume, J. C., Caltagirone, J. P., and Laine, P., “Freezing of liquids by spraying into vacuum,” Prům. Potravin, 16, 628–630 (1965).Google Scholar
  103. 103.
    Findlay, A., Introduction to Physical Chemistry, second ed. Longmans, Green, London (1933).Google Scholar
  104. 104.
    Porter, W. L. and Roote, W. L., III, U.S. Patent 3,162,091, Filed November, 1962 (1964).Google Scholar
  105. 105.
    Greaves, R. I. N., “Serum-plasma preservation,” Cryobiology, 5, 76–86 (1968).CrossRefGoogle Scholar
  106. 106.
    Seffinga, G., U.S. Patent 3,264,745, Filed Holland, March, 1963 (1966).Google Scholar
  107. 107.
    Mason, P. B., Improvements in Freeze-Drying, with Special Reference to Liquids, International Food Industries Congress (1964).Google Scholar
  108. 108.
    Delia Porta, P., U.K. Patent 1,062,159, Filed 1962 (1967).Google Scholar
  109. 109.
    Fernández-Morán, H., “Low temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II,” Ann. N.Y. Acad. Sci., 85, Art. 2, pp. 689–713 (1960).CrossRefGoogle Scholar
  110. 110.
    Rowe, T. W. G., “Vacuum systems for freeze-drying,” (Cotson, S. and Smith, D. B., eds.) in Freeze-drying of Foodstuffs, pp. 12–29, Columbine Press, Manchester (1963).Google Scholar
  111. 111.
    Rowe, T. W. G., “Recent advances in vacuum methods,” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 47–57, Hermann, Paris (1964).Google Scholar
  112. 112.
    MacKenzie, A. P., “Factors affecting the mechanism of transformation of ice into water vapor in the freeze-drying process,” Ann. N.Y. Acad. Sci., 125, Art. 2, pp. 522–547 (1965).CrossRefGoogle Scholar
  113. 113.
    Kelsey, J. C., “Discharge from a hospital vacuum suction system,” Lancet, i, 497–498 (1960).CrossRefGoogle Scholar
  114. 114.
    Rowe, T. W. G., Achucarro, J. L., and Smith, B. Drummond, “Factors affecting the economy of the freeze-drying process,” (Cotson, S. and Smith, D. B., eds.) in Freeze-Drying of Foodstuffs, pp. 71–101, Columbine Press, Manchester (1963).Google Scholar
  115. 115.
    Greaves, R. I. N., Nagington, J., and Kellaway, T. D., “Preservation of living cells by freezing and by drying,” Fedn. Proc. Fedn. Am. Socs. Exp. Biol., 22, 90–93 (1963).Google Scholar
  116. 116.
    Rowe, T. W. G., “Water vapour removal in food freeze-drying,” Vide, 17, no. 102, pp. 516–530 (1962).Google Scholar
  117. 117.
    Oetjen, G. W., “Freeze-drying of food products,” (Rey, L. R., ed.) in Advances in Freeze-Drying, pp. 165–175, Hermann, Paris (1966).Google Scholar
  118. 118.
    Nyalkin, A. I., Russian Patent 165,660, Filed October, 1963 (1964).Google Scholar
  119. 119.
    Triggs, W. W., U.K. Patent 586,693, Filed September, 1944 (1947).Google Scholar
  120. 120.
    Tucker, W. H. and Sherwood, T. K., “Vacuum dehydration using liquid absorbents,” Ind. Engng. Chem., 40, 832–838 (1948).CrossRefGoogle Scholar
  121. 121.
    Hickman, K. C. D., U.S. Patent 2,402,401, Filed June, 1942 (1946).Google Scholar
  122. 122.
    Schwarz, H. W. and Penn, F. R., “Production of orange juice concentrate and powder,” Ind. Engng. Chem. 40, 938–944 (1948).CrossRefGoogle Scholar
  123. 123.
    Thuse, E., U.S. Patent 3,132,929, Filed November, 1960 (1964).Google Scholar
  124. 124.
    Pillsbury Company, U.K. Patent 932,576, Filed U.S.A. April, 1960 (1963).Google Scholar
  125. 125.
    Eolkin, D., U.S. Patent 3,210,861, Filed March, 1962 (1965).Google Scholar
  126. 126.
    Saravacos, G. D., “Freeze-drying using molecular sieve absorbents,” Food Technol., 21, 187–192 (1967).Google Scholar
  127. 127.
    Robson, E. M., “The vacuum use of molecular sieves and other desiccants,” Vacuum, 11, 10–15 (1961).CrossRefGoogle Scholar
  128. 128.
    Pfeiffer, D. C. and Macglashan, J., U.S. Patent 2,374,222, Divided application filed 1941 (1945).Google Scholar
  129. 129.
    Balzers, Patent-und Lizenz-Anstalt, U.K. Patent 910,059, Filed Germany, December, 1959 (1960).Google Scholar
  130. 130.
    Bath, H. H. A., Olejniczak, J. S., and Steckelmacher, W., “The Measurement of Water Vapour Pressure in Vacuum Systems Using a Quartz Crystal Oscillator,” Trans. of the 3rd International Vacuum Congress, Stuttgart 1965, Vol. 2, Part 2, pp. 381-392 (1967).Google Scholar
  131. 131.
    Strasser, J., “A possibility to control the drying process during drying by sublimation in vacuum by means of measuring the partial pressure of non-condensable gases,” Vakuum-Tech. 14, 181–185 (1965).Google Scholar
  132. 132.
    Mastenbroek, G. G. A., “The freeze-drying of mother’s milk,” (Harris, R. J. C, ed.) in Biological Applications of Freezing and Drying, pp. 177–183, Academic Press, New York (1954).Google Scholar
  133. 133.
    Smithies, W. R. and Blakley, T. S., “Design of freeze-drying equipment for the dehydration of foodstuffs,” Food Technol. 13, 610–614 (1959).Google Scholar
  134. 134.
    Levinson, S. O. and Oppenheimer, F., U.S. Patent 2,445,120, Filed September, 1947 (1948).Google Scholar
  135. 135.
    Lundquist, E. B., “Application of thermal infrared radiation as a heat source in the freeze-drying of liquid food materials,” Diss. Abstr., 25, 1141–1142 (1964).Google Scholar
  136. 136.
    Oppenheimer, F., U.S. Patent 3,271,874, Filed January, 1965 (1966).Google Scholar
  137. 137.
    Oldenkamp, H. A. and Small, R. F., U.S. Patent 3,199,217, Filed March, 1962 (1965).Google Scholar
  138. 138.
    Mehrlich, F. P. and Haugh, R. R., U.S. Patent 3,169,070, Filed April, 1961 (1965).Google Scholar
  139. 139.
    Rowe, T. W. G., U.K. Patent 922,493, Filed April, 1961 (1963).Google Scholar
  140. 140.
    Brynko, C. and Smithies, W. R., “Rapid vacuum freeze-drying of meat,” J. Sci. Food Agric., 9, September, 576–583 (1958).CrossRefGoogle Scholar
  141. 141.
    Jeppson, M. R., U.S. Patent 3,222,796, Filed June, 1962 (1965).Google Scholar
  142. 142.
    Greaves, R. I. N., “The application of heat to freeze-drying systems,” Ann. N.Y. Acad. Sci. 85, Art. 2, 682–688 (1960).CrossRefGoogle Scholar
  143. 143.
    Hackenberg, V., U.S. Patent 3,234,658, Filed February, 1963 (1966).Google Scholar
  144. 144.
    Dalgleish, J. McNair, U.K. Patent 928,925, Filed April, 1962 (1963).Google Scholar
  145. 145.
    Fox, H., “Tumbler freeze-dryer,” Food Mf., 40, no. 3, 58–61 (1965).Google Scholar
  146. 146.
    Rockwell, W. C., Kaufman, V. F., Lowe, E., and Morgan, A. I. Jr., “Hextube freeze-dryer permits continuous F-D,” Food Engng., 37, no. 4, 49–51 (1965).Google Scholar
  147. 147.
    Hansen, O., “Development of Continuous Freeze-Drying Equipment for Liquids and Powdered Materials,” 2nd International Congress of Food Science and Technology, Warsaw, August, 1966.Google Scholar
  148. 148.
    Decareau, R. V., “How microwaves speed freeze-drying,” Food Engng., 33, no. 8., 34–36 (1961).Google Scholar
  149. 149.
    Copson, D. A., “The Technology of Microwave Freeze-Dried Foods,” in Microwave Healing, pp. 235-260, Avi Publishing Co. (1962).Google Scholar
  150. 150.
    Meryman, H. T., “The preparation of biological specimens by freeze-drying,” Curator, 3, 5–19 (1960).CrossRefGoogle Scholar
  151. 151.
    Harris, R. H., “Vacuum dehydration and freeze drying of entire biological specimens,” Ann. Mag. Nat. Hist., Ser. 13, 7, 65–74 (1964).Google Scholar
  152. 152.
    Harris, R. H., “A new apparatus for freeze-drying whole biological specimens,” Med. Biol. Illust., 18, 180–182 (1968).Google Scholar
  153. 153.
    Simatos, D., “L’eau et les formes de liaison de l’eau dans les produits lyophilisés,” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 235–252, Hermann, Paris (1964).Google Scholar
  154. 154.
    Nei, T., Araki, T., and Souzu, H., “Studies of the effect of drying conditions on residual moisture content and cell viability in the freeze-drying of microorganisms,” Cryobiology, 2, 68–73 (1965).CrossRefGoogle Scholar
  155. 155.
    Calloway, D. H., “Dehydrated foods,” Nutr. Rev. 20, 257–260 (1962).CrossRefGoogle Scholar
  156. 156.
    Berlin, E., Kliman, P. G., and Pallansch, M. J., “Surface areas and densities of freeze-dried foods,” J. Agric. Food Chem., 14, 15–17 (1966).CrossRefGoogle Scholar
  157. 157.
    Bishov, S. J., Henick, A. S., and Koch, R. B., “Oxidation of fat in model systems related to dehydrated foods,” Food Res., March–April, 25, 174–182 (1960).CrossRefGoogle Scholar
  158. 158.
    Greiff, D. and Rightsel, W. A., “Stability of suspensions of influenza virus dried to different contents of residual moisture by sublimation in vacuo,” Appl. Microbiol. 16, 835–840 (1968).Google Scholar
  159. 159.
    Greiff, D., Department of Pathology, Marquette School of Medicine, Milwaukee, Wisconsin 53233 (personal communication).Google Scholar
  160. 160.
    Greiff, D. and Rightsel, W. A., “An accelerated storage test for predicting the stability of suspensions of measles virus dried by sublimation in vacuo,” J. Immun., 94, 395–400 (1965).Google Scholar
  161. 161.
    Tootill, J. P. R., “A slope-ratio design for accelerated storage tests,” J. Pharm. Pharmacol. 13, Supplement, 75T-86T, December (1961).Google Scholar
  162. 162.
    MacKenzie, A. P., Limited Frede-Drying, 11th Annual Meeting of the Biophysical Society, Houston, Texas, February 22-24, 1967.Google Scholar
  163. 163.
    Rey, L., “L’humidité résiduelle des produits lyophilisés: nature—Origine et méthodes d’étude,” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Developments in Freeze-Drying, pp. 199–234, Hermann, Paris (1964).Google Scholar
  164. 164.
    Kaplan, C., Department of Microbiology, The University, Reading, Berkshire (personal communication).Google Scholar
  165. 165.
    Malpas, E. W., The Stoppering of Containers in Vacuum, Proc. 4th Int. Vaccum Congr., pp. 759-762, Manchester, England (1968).Google Scholar
  166. 166.
    Fidler, F., “Packaging of freeze-dried foods,” Food Trade Rev., 34, no. 5, 40–44, 46 (1964).Google Scholar
  167. 167.
    Wallis, C, Melnick, J. L., and Rapp, F., “Different effects of MgCl2 and MgSO4 on the thermostability of viruses,” Virology, 26, 694–699 (1965).CrossRefGoogle Scholar
  168. 168.
    Anon. “Freeze-dried ice cream,” Food Process./Marketing, 27, (1), 32, January (1966).Google Scholar
  169. 169.
    Anon. “Freeze-dried peaches and corn flakes,” Canner/Pckr, 135, no. 1, 87 (1966).Google Scholar
  170. 170.
    Hackenberg, V., U.S. Patent 3,238,633, Filed June, 1963 (1966).Google Scholar
  171. 171.
    Hackenberg, V., German Patent 1,196,128, Filed January, 1962 (1965).Google Scholar
  172. 172.
    Delia Porta, P. and Rowe, T. W. G., “A new range of pharmaceutical freeze-driers,” Vide, 16, no. 91, 54–63 (1961).Google Scholar
  173. 173.
    Hyatt, G. W., “La Banque des Tissus d’Origine Humaine,” (Rey, L. R., ed.) in Traité de Lyophilisation, pp. 179–252, Hermann, Paris (1960).Google Scholar
  174. 174.
    Bassett, C. A. L., “Tissue banks: a survey of the current status of tissue procurement, processing, and use” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 431–449, Hermann, Paris (1964).Google Scholar
  175. 175.
    Dexter, F., “The preservation of tissue for surgical transplantation and, subsequent formation of a tissue bank,” J. Sci. Technol., 11, no. 4, Part 1, 149–166, 12, no. 1, Part, 2, 1-30 (1965, 1966).Google Scholar
  176. 176.
    Sjöstrand, F. S., “Freeze-drying of tissues for cell analysis by light and electron microscopy,” (Harris, R. J. C, ed.) in Freezing and Drying, pp. 177–188, Inst. Biol., London (1951)Google Scholar
  177. 177.
    Pearse, A. G. E., “Rapid freeze-drying of biological tissues with a thermoelectric unit,” J. Scient. Instrum., 40, 176–177 (1963).CrossRefGoogle Scholar
  178. 178.
    Rowe, T. W. G., “A Thermoelectric Freeze-dryer for Tissue”, 1963 Transactions the 10th National Vacuum Symposium, American Vacuum Society, pp. 54-58, Pergamon Press (1963).Google Scholar
  179. 179.
    Moor, H., “Die Gefrierfixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie,” Z. Zellforsch. mikrosk. Anat., 62, 546–580 (1964).CrossRefGoogle Scholar
  180. 180.
    Steere, R. L., “Electron microscopy of structural detail in frozen biological specimens,” J. Biophys. Biochem. Cytol., 3, 45–60 (1957).CrossRefGoogle Scholar
  181. 181.
    Hall, C. E., “A low temperature replica method for electron microscopy,” J. Appl. Phys. 21, 61–62 (1950).CrossRefGoogle Scholar
  182. 182.
    Bullivant, S. and Ames, A., “A simple freeze-fracture replication method for electron microscopy,” J. Cell Biol., 29, 435–447 (1966).CrossRefGoogle Scholar
  183. 183.
    Collins, J. M., Boyce, J. J., and Edgar, A. W., “Preparation of a living vaccine from continuous culture produced cells,” J. Appl. Bact., 29, 401 (1966).CrossRefGoogle Scholar
  184. 184.
    Ionescu, M. I., Scott, O., and Wooler, G. H., “Surgical treatment of a cyanotic double-outlet right ventricle,” Thorax, 22, 236–243 (1967).Google Scholar
  185. 185.
    Smithies, W. R., “Freeze-drying of meat and meat products,” (Rey, L., ed.) in Advances in Freeze-Drying, pp. 177–190, Hermann, Paris (1966).Google Scholar
  186. 186.
    Mellor, J. D. and Lovett, D. A., “Flow of gases through channels with reference to porous materials,” Vacuum 18, 625–627 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1970

Authors and Affiliations

  • Terence W. G. Rowe
    • 1
  1. 1.Central Research LaboratoryEdwards High Vacuum International LimitedCrawley, SussexEngland

Personalised recommendations