Skip to main content

Freeze-Drying of Biological Materials: Some Physical and Engineering Aspects

  • Chapter
Current Trends in Cryobiology

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

Abstract

Decay in Nature. The principal external agents of decay or destruction in nature are erosion, corrosion, oxidation, thermal expansion and contraction, enzymic action, the growth of microbes and moulds, and attack by predators. Also, living organisms have their own life cycles—they “age and die and heaven knows why.” The remedies against physical damage and chemical action (of which oxidation is a special case) are straightforward in principle, if sometimes difficult to apply: so also is protection from predators. Enzymes are inactivated by heat which can also destroy microorganisms. Both are also vulnerable to changes in electrolyte and hydrogen ion concentration (pH), freezing, drying, and irradiation. Pickling in vinegar is a combination of heat and pH change. Jam making combines heat and dehydration because the sugar reduces the available water. But suppose it is the bacteria, yeasts, moulds, and viruses themselves that we wish to preserve—any method that destroys them is immediately excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grant, N. H., “The biological role of ice,” Discovery (London), 27, no. 8, 26–30 (1966).

    Google Scholar 

  2. Hirsch, M., “Drying and freezing,” Refrig. Engng., 51, 331–334, 334, 366, 368 (1946).

    Google Scholar 

  3. Greaves, R. I. N., “The Preservation of Proteins by Drying” (Medical Research Council Special Report Series no. 258) H.M.S.O., London (1946).

    Google Scholar 

  4. Bradford, P. and Briggs, S. W., “Jet spray drying,” Chem. Engng. Progr., 59, no. 3, 76–80 (1963).

    Google Scholar 

  5. Annear, D. I., “The preservation of bacteria by drying in peptone plugs,” J. Hyg., Camb., 54, 487–508 (1956).

    Article  Google Scholar 

  6. Annear, D. I., “Observations on drying bacteria from the frozen and from the liquid state,” Aust. J. Exp. Biol. Med. Sci., 36, 211–222 (1958).

    Article  Google Scholar 

  7. MacKenzie, A. P. and Shewan, J. M., “Possible mechanisms for increased viability using an Isothermal Dryer,” Ministry of Technology, T 68/27/2 (1968).

    Google Scholar 

  8. Meryman, H. T., “Drying of living mammalian cells,” Ann. N. Y. Acad. Sci., 85, 729–734 (1960).

    Article  Google Scholar 

  9. Meryman, H. T. and Kafig, E., “Survival of spermatozoa following drying,” Nature (London), 184, 470–471 (1959).

    Article  Google Scholar 

  10. Greaves, R. I. N., “Recent advances in freeze-drying,” J. Pharm. Pharmac., 14, 621–640 (1962).

    Article  Google Scholar 

  11. Rey, L. R., “Un développement nouveau de la lyophilisation: la cryodessiccation des systèmes non aqueux,” Experientia, 21, 241–246 (1965).

    Article  Google Scholar 

  12. Rey, L. R., Dousset, M., and Chauffard, F., “Les lyophilisations complexes,” (Rey, L. R., ed.) in Advances in Freeze-Drying, pp. 89–94, Hermann, Paris (1966).

    Google Scholar 

  13. Jensen, W. A., “Freeze Substitution and Freeze-Drying,” in Botanical Histochemistry, pp. 100–127, Freeman, U.S.A. (1962).

    Google Scholar 

  14. Freeman, R. R., Auro, M. A., Dashiell, J. R., Murphy, J. E., Oshrine, I., and Smith, R. F., “Drying viable biological materials by solvent extraction and azeotropic distillation,” Chem. Eng. Progr., 53, no. 12, 590–592 (1957).

    Google Scholar 

  15. Robson, E. M. and Rowe, T. W. G., “The physics of secondary drying,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 146–166, Blackwell, Oxford (1960).

    Google Scholar 

  16. Flosdorf, E. W., Freeze-Drying, Reinhold Publishing Corp., New York (1949).

    Google Scholar 

  17. Harris, R. J. C. (ed.), Biological Applications of Freezing and Drying, Academic Press, New York (1954).

    Google Scholar 

  18. Parkes, A. S. and Smith, A. U. (eds.), Recent Research in Freezing and Drying, Blackwell, Oxford (1960).

    Google Scholar 

  19. Rey, L. R. (ed.), Traité de la Lyophilisation, Hermann, Paris (1960).

    Google Scholar 

  20. Rey, L. R. (ed.), Progrès Récents en Lyophilisation, Hermann, Paris (1962).

    Google Scholar 

  21. Rey, L. R. (ed.), Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, Hermann, Paris (1964).

    Google Scholar 

  22. Rey, L. R. (ed.), Advances in Freeze-Drying, Hermann, Paris (1966).

    Google Scholar 

  23. Cotson, S. and Smith, D. B. (eds.), Freeze-Drying Foodstuffs, Based on a Symposium at the Borough Polytechnic, London, Columbine Press, Manchester (1963).

    Google Scholar 

  24. Meryman, H. T., “Freeze-Drying,” (Meryman, H. T., ed.) in Cryobiology, pp. 609–663, Academic Press, New York (1966).

    Google Scholar 

  25. Kramers, H. and Stemerding, S., “The sublimation of ice in vacuum,” Appl. Scient. Res., A 3, 73–82 (1951).

    Google Scholar 

  26. Carman, P. C., “Molecular distillation and sublimation,” Trans. Faraday Soc., 44, 529–536 (1948).

    Article  Google Scholar 

  27. Carman, P. C., “Some basic principles of freeze-drying and molecular distillation,” in Freeze-Drying of Foods, Proceedings of a Conference Sponsored by the Quartermaster Food and Container Institute for the Armed Forces, Chicago, pp. 77-84, National Academy of Sciences, Washington, D.C. (1962).

    Google Scholar 

  28. Schrage, R. W., A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York (1953).

    Google Scholar 

  29. Loeb, L. B., The Kinetic Theory of Gases, 2nd ed., p. 99, McGraw-Hill Book Co. Inc., New York (1934).

    Google Scholar 

  30. Kramers, H., “Rate Controlling Factors in Freeze-drying”, Fundamental Aspects of the Dehydration of Foodstuffs, Soc. Chem. Ind. Conference, pp. 57-66 (1959).

    Google Scholar 

  31. Luyet, B. J., “Effects of freezing rates on the structure of freeze-dried materials and on the mechanism of rehydration,” in Freeze-Drying of Foods, Proceedings of a Conference Sponsored by the Quartermaster Food and Container Institute for the Armed Forces, Chicago, pp. 194-211, National Academy of Sciences, Washington, D.C. (1962).

    Google Scholar 

  32. Neumann, K. H., “Freeze-drying of foodstuffs,” L. Rey (ed.), in Progrès Récents en Lyophilisation, pp. 107–126, Hermann, Paris (1962).

    Google Scholar 

  33. Stephenson, J. L., “Fundamental physical problems in the freezing and drying of biological materials,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 121–145, Blackwell, Oxford (1960).

    Google Scholar 

  34. Harper, J. C. and Tappel, A. L., “Freeze-drying of food products,” Adv. Food Res., 7, 172–232 (1957).

    Google Scholar 

  35. Charm, S. E., “Freeze-drying,” in The Fundamentals of Food Engineering, pp. 359-381, Avi Publishing Co. Inc., Westport, Conn. (1963).

    Google Scholar 

  36. Harper, J. C., “Transport properties of gases in porous media at reduced pressures with reference to freeze-drying,” A. I. Ch. E. J., 8, 298–302 (1962).

    Article  Google Scholar 

  37. Rowe, T. W. G., The Freeze-Drying of Food: A Review of the Principles, Conference on Drying, Institute of Fuel, Republic of Ireland Group, Dublin, May, 1963.

    Google Scholar 

  38. Rowe, T. W. G., “Energy, mass transfer and economy in large scale freeze-drying,” in Rey, L.R., ed., Aspects théoriques et industriels de la lyophilisation: Researches and Development in Freeze-Drying, pp. 141–170, Hermann, Paris (1964.)

    Google Scholar 

  39. Saravacos, G. D. and Stinchfield, R. M., “Effect of temperature and pressure on the sorption of water vapor by freeze-dried food materials,” J. Food Sci., 30, 779–786 (1965).

    Article  Google Scholar 

  40. Triebes, T. A. and King, C. J., “Factors influencing the rate of heat conduction in freeze-drying,” I. and E. C. Process Design and Development, 5, 430–436 (1966).

    Article  Google Scholar 

  41. Ginnette, L. F., Graham, R. P., and Morgan, A. I., Freeze-Drying Rates, 5th Nat. Symp. Vacuum Tech. Trans., pp. 268-273 (1958).

    Google Scholar 

  42. Peck, R. E., Engineering Studies on the Freeze-drying of Foods, Quartermaster Food and Container Institute for the Armed Forces, Chicago (1960), Final report. Contract No. DA 19-129-QM 1366.

    Google Scholar 

  43. Hackenberg, V., “Some fundamental and technical aspects of freeze-drying,” (Rey, L. R., ed), in Aspects théoriques et industriels de la lyophilisation: Researches and Development in Freeze-Drying, pp. 127–139, Hermann, Paris (1964).

    Google Scholar 

  44. Neumann, K. H., “Les Problèmes de Mesure et de Réglage en Lyophilisation,” (Rey, L., ed.), in Traité de la Lyophilisation, pp. 185–194, Hermann, Paris (1960).

    Google Scholar 

  45. Neumann, K. H. and Hackenberg, V., “Considérations sur la lyophilisation industrielle,” (Journées du Vide de Printemps May 5–6, 1960) Vide, 16, no. 91, 25–31 (1961).

    Google Scholar 

  46. Rieutord, L. M. A., U.S. Patent 3,192,643, Filed France, January, 1961 (1965).

    Google Scholar 

  47. Rey, L. R., “Procédé et dispositif pour le contrôle et la régulation de la congelation et du dégel de différentes substances et notamment pour le contrôle et la régulation d’opérations de congélation-dessiccation,” Brevets d’invention du Centre National de la Recherche Scientifique, Paris (1959).

    Google Scholar 

  48. Rey, L. R., “Automatic regulation of the freeze-drying of complex systems,” Biodynamica, 8, 241–260 (1961).

    Google Scholar 

  49. Rieutord, L., “Caractéristiques générales des appareils industriels à Lyophiliser,” (Rey, L., ed.), in Traité de la Lyophilisation, pp. 141–176, Hermann, Paris (1960).

    Google Scholar 

  50. Hamilton, L. H., U.S. Patent 3, 230,633 (1966).

    Google Scholar 

  51. Mellor, J. D., “Vapour transfer in the course of freeze-drying,” (Rey, L. R., ed.), in Advances in Freeze-Drying, pp. 75–88, Hermann, Paris (1966).

    Google Scholar 

  52. Levinson, S. O. and Oppenheimer, F., U.S. Patent 2,435,503, Filed September, 1943 (1948).

    Google Scholar 

  53. Treffenberg, L., “A method of freeze-drying of histological preparations,” Ark. Zool. 4, 295–296 (1953).

    Google Scholar 

  54. Jensen, W. A., “A new approach to freeze-drying of tissue,” Exp. Cell Res. 7, 572–574 (1954).

    Article  Google Scholar 

  55. Mink, W. H. and Saschel, G. F., “Evaluation of freeze-drying mechanism using mathematical models,” in Freeze-Drying of Foods, Proceedings of a Conference Sponsored by the Quartermaster Food and Container Institute for the Armed Forces, Chicago, pp. 84-92, National Academy of Sciences, Washington, D.C. (1962).

    Google Scholar 

  56. Barrer, R. M., Diffusion In and Through Solids, University Press, Cambridge (1951).

    Google Scholar 

  57. Magnussen, O. M., “Design of an apparatus for the measurement of water vapour diffusion through porous goods in vacuum,” Bull. Int. Inst. Refrig. Annexe 2, p. 213 (1966).

    Google Scholar 

  58. Lafuente, B. and Pinago, F., “Moisture-sorption isotherms for some freeze-dried products,” Rev. Agroquim. Technol. Alimentos, 6, 113–117 (1966).

    Google Scholar 

  59. Meryman, H. T., “Sublimation freeze-drying without vacuum,” Science, 130, 628–629 (1959).

    Article  Google Scholar 

  60. Meryman, H. T., U.S. Patent 3,096,163, Filed August, 1960 (1963).

    Google Scholar 

  61. Palmer, R. T., U.S. Patent 2,480,954, Filed May, 1944 (1949).

    Google Scholar 

  62. Lind, V. W. and Lind, D. C., U.S. Patent 3,218,727, Filed July, 1962 (1965).

    Google Scholar 

  63. Lewin, L. M. and Mateles, R. I., “Freeze drying without vacuum: a preliminary investigation,” Food Technol. 16, No. 1, 94–96 (1962).

    Google Scholar 

  64. Smutny, F., [“Freeze-dehydration without vacuum,”] Prům. Potravin, 16, 257–259 (1965).

    Google Scholar 

  65. Woodward, T. H., Study of Vapour Removal Systems in Dehydration of Food Products Having Piece or Block Conformation, Quartermaster Food and Container Institute for the Armed Forces, Chicago (1961).

    Google Scholar 

  66. Folsom, T. R., U.S. Patent 2,411,152, Filed May, 1941 (1946).

    Google Scholar 

  67. Reidel, L. von, “Calorimetric experiments on the freezing of meat,” Kältetechnic, 9, Heft 2, 38 (1957).

    Google Scholar 

  68. Reidel, L. von, “Calorimetric experiments on the freezing of egg white and egg yolk,” Kältetechnic, 9, Heft 11, 342 (1957).

    Google Scholar 

  69. MacKenzie, A. P., “Basic principles of freeze-drying for Pharmaceuticals,” Bull. Parent Drug Assn., 20, 101–129 (1966).

    Google Scholar 

  70. Rey, L. R. and Bastien, M.-C., “Biophysical aspects of freeze-drying,” in Freeze-drying of Foods, Proceedings of a Conference Sponsored by the Quartermaster Food and Container Institute of the Armed Forces, Chicago, pp. 25-42, National Academy of Sciences, Washington, D.C. (1962).

    Google Scholar 

  71. MacKenzie, A. P., “The ‘Collapse Phenomenon’” in The Freeze-Drying Process, Cryobiology 3, 387 (1967).

    Google Scholar 

  72. MacKenzie, A. P. and Luyet, B. J., “A Relationship Between the Behavior of a Frozen Solution upon Freeze-drying and its Tendency to Recrystallize” 9th Annual Meeting of the Biophysical Society, San Francisco, Calif., February 24-26, 1965.

    Google Scholar 

  73. MacKenzie, A. P. and Luyet, B. J., “Temperatures at which the Freeze-drying of Mixed Aqueous Solutions Undergoes a Change in Mechanism. Effect of Composition,” Cryobiology 2, 29 (1965).

    Google Scholar 

  74. MacKenzie, A. P., Zagorski, M. A., and Luyet, B. J., “Mode of Vapour Transport in the Freeze-Drying of KC1 Solutions,” Cryobiology 2, 29 (1965).

    Google Scholar 

  75. Muggleton, P. W., “The preservation of cultures,” (Hockenhull, D. J. D., ed.), in Progress in Industrial Microbiology, Vol. 4, pp. 189–214, Heywood, London (1963).

    Google Scholar 

  76. Fry, R. M. and Greaves, R. I. N., “The survival of bacteria during and after drying,” J. Hyg., Camb., 49, 220–246 (1951).

    Article  Google Scholar 

  77. Obayashi, Y., “The Preservation of B. C. G.,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 221–228, Blackwell, Oxford (1960).

    Google Scholar 

  78. Muggleton, P. W., “Freeze-drying of bacteria with special reference to B. C. G.,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 229–237, Blackwell, Oxford (1960).

    Google Scholar 

  79. Scott, W. J., “A mechanism causing death during storage of dried microorganisms,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 188–202, Blackwell, Oxford (1960).

    Google Scholar 

  80. Fry, R. M., “Freezing and drying of bacteria,” (Meryman, H. T., ed.,) in Cryobiology, pp. 665–696, Academic Press, New York (1966).

    Google Scholar 

  81. Davies, J. D., “Freeze-drying biological materials,” Process Biochemistry, 3, Part 1, pp. 11–21 Part 2, pp. 48-52 (1968).

    Google Scholar 

  82. Greiff, D. and Rightsel, W., “Freezing and freeze-drying of viruses,” (Meryman, H. T., ed.) in Cryobiology, pp. 697–728, Academic Press, New York (1966).

    Google Scholar 

  83. Greiff, D. and Rightsel, W. A., “Stabilities of suspensions of viruses after freezing or drying by vacuum sublimation and storage,” Cryobiology, 3, 432–444 (1967).

    Article  Google Scholar 

  84. Rightsel, W. A. and Greiff, D., “Freezing and freeze-drying of viruses,” Cryobiology, 3, 423–431 (1967).

    Article  Google Scholar 

  85. Bird, K., Selected Writings on Freeze-drying of Foods, U.S. Department of Agriculture, Washington, D.C. (1964).

    Google Scholar 

  86. Great Britain, Ministry of Agriculture, Fisheries, and Food, (Hanson, S. W. F., ed.) The Accelerated Freeze-drying (AFD) Method of Food Preservation, H.M.S.O., London (1961).

    Google Scholar 

  87. Goldblith, S. A., “Freeze-dehydration of foods,” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 555–572, Hermann, Paris (1964).

    Google Scholar 

  88. Goldblith, S. A. and Karel M., “Stability of freeze-dried foods,” (Rey, L. R., ed.) in Advances in Freeze-Drying, pp. 191–210, Hermann, Paris (1966).

    Google Scholar 

  89. Goldblith S. A., Karel, M., and Lusk, G., “The role of food science and technology in the freeze dehydration of foods,” (Rey, L., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 527–553, Hermann, Paris (1964).

    Google Scholar 

  90. Draudt, H. N., Enzymic Activity in Freeze-Dried Foods, Quartermaster Food and Container Institute for the Armed Forces, Chicago (1962) Final report. Contract DA 19-129-QM 1503.

    Google Scholar 

  91. Kuprianoff, J., “Fundamental and practical aspects of the freezing of foodstuffs, (Rey, L., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 497–517, Hermann, Paris (1964).

    Google Scholar 

  92. Kuprianoff, J., “Preservation and stability of frozen foods,” (Rey, L. R., ed.) in Advances in Freeze-Drying, pp. 147–164, Hermann, Paris (1966).

    Google Scholar 

  93. Lund, D. B., Fennema, O., and Powrie, W. D., “Rotation apparatus for shell-freezing,” Cryobiology, 5, 26–28 (1968).

    Article  Google Scholar 

  94. Rey, L. R., “Study of the freezing and drying of tissues at very low temperatures,” (Parkes, A. S. and Smith, A. U., eds.) in Recent Research in Freezing and Drying, pp. 40–62, Blackwell, Oxford (1960).

    Google Scholar 

  95. Greaves, R. I. N., “Theoretical aspects of drying by vacuum sublimation,” (Harris, R. J. C, ed.) in Biological Applications of Freezing and Drying, pp. 87–127, Academic Press, New York (1954).

    Google Scholar 

  96. Rey, L. R., “Thermal analysis of eutectics in freezing solutions,” Ann. N.Y. Acad. Sci., 85, Art. 2, pp. 510–534 (1960).

    Article  Google Scholar 

  97. Davies, J. D., “Thermal analysis in freezing and freeze-drying,” (Rey, L., ed.) in Advances in Freeze-Drying, pp. 9–20, Hermann, Paris (1966).

    Google Scholar 

  98. Greaves, R. I. N., “Centrifugal vacuum freezing,” Nature (London), 153, 485–487 (1944).

    Article  Google Scholar 

  99. Verma, N. S. and Rowe, T. W. G., “The breakage of glass ampoules during freeze-drying,” Vacuum, 9, 21–27 (1959).

    Article  Google Scholar 

  100. Levinson, S. O. and Oppenheimer, F., U.S. Patent 2,533,125, Filed February, 1946 (1950).

    Google Scholar 

  101. Greaves, R. I. N., “High vacuum spray freeze-drying,” Vide, 17, no. 102, pp. 549–559 (1962).

    Google Scholar 

  102. Guillaume, J. C., Caltagirone, J. P., and Laine, P., “Freezing of liquids by spraying into vacuum,” Prům. Potravin, 16, 628–630 (1965).

    Google Scholar 

  103. Findlay, A., Introduction to Physical Chemistry, second ed. Longmans, Green, London (1933).

    Google Scholar 

  104. Porter, W. L. and Roote, W. L., III, U.S. Patent 3,162,091, Filed November, 1962 (1964).

    Google Scholar 

  105. Greaves, R. I. N., “Serum-plasma preservation,” Cryobiology, 5, 76–86 (1968).

    Article  Google Scholar 

  106. Seffinga, G., U.S. Patent 3,264,745, Filed Holland, March, 1963 (1966).

    Google Scholar 

  107. Mason, P. B., Improvements in Freeze-Drying, with Special Reference to Liquids, International Food Industries Congress (1964).

    Google Scholar 

  108. Delia Porta, P., U.K. Patent 1,062,159, Filed 1962 (1967).

    Google Scholar 

  109. Fernández-Morán, H., “Low temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II,” Ann. N.Y. Acad. Sci., 85, Art. 2, pp. 689–713 (1960).

    Article  Google Scholar 

  110. Rowe, T. W. G., “Vacuum systems for freeze-drying,” (Cotson, S. and Smith, D. B., eds.) in Freeze-drying of Foodstuffs, pp. 12–29, Columbine Press, Manchester (1963).

    Google Scholar 

  111. Rowe, T. W. G., “Recent advances in vacuum methods,” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 47–57, Hermann, Paris (1964).

    Google Scholar 

  112. MacKenzie, A. P., “Factors affecting the mechanism of transformation of ice into water vapor in the freeze-drying process,” Ann. N.Y. Acad. Sci., 125, Art. 2, pp. 522–547 (1965).

    Article  Google Scholar 

  113. Kelsey, J. C., “Discharge from a hospital vacuum suction system,” Lancet, i, 497–498 (1960).

    Article  Google Scholar 

  114. Rowe, T. W. G., Achucarro, J. L., and Smith, B. Drummond, “Factors affecting the economy of the freeze-drying process,” (Cotson, S. and Smith, D. B., eds.) in Freeze-Drying of Foodstuffs, pp. 71–101, Columbine Press, Manchester (1963).

    Google Scholar 

  115. Greaves, R. I. N., Nagington, J., and Kellaway, T. D., “Preservation of living cells by freezing and by drying,” Fedn. Proc. Fedn. Am. Socs. Exp. Biol., 22, 90–93 (1963).

    Google Scholar 

  116. Rowe, T. W. G., “Water vapour removal in food freeze-drying,” Vide, 17, no. 102, pp. 516–530 (1962).

    Google Scholar 

  117. Oetjen, G. W., “Freeze-drying of food products,” (Rey, L. R., ed.) in Advances in Freeze-Drying, pp. 165–175, Hermann, Paris (1966).

    Google Scholar 

  118. Nyalkin, A. I., Russian Patent 165,660, Filed October, 1963 (1964).

    Google Scholar 

  119. Triggs, W. W., U.K. Patent 586,693, Filed September, 1944 (1947).

    Google Scholar 

  120. Tucker, W. H. and Sherwood, T. K., “Vacuum dehydration using liquid absorbents,” Ind. Engng. Chem., 40, 832–838 (1948).

    Article  Google Scholar 

  121. Hickman, K. C. D., U.S. Patent 2,402,401, Filed June, 1942 (1946).

    Google Scholar 

  122. Schwarz, H. W. and Penn, F. R., “Production of orange juice concentrate and powder,” Ind. Engng. Chem. 40, 938–944 (1948).

    Article  Google Scholar 

  123. Thuse, E., U.S. Patent 3,132,929, Filed November, 1960 (1964).

    Google Scholar 

  124. Pillsbury Company, U.K. Patent 932,576, Filed U.S.A. April, 1960 (1963).

    Google Scholar 

  125. Eolkin, D., U.S. Patent 3,210,861, Filed March, 1962 (1965).

    Google Scholar 

  126. Saravacos, G. D., “Freeze-drying using molecular sieve absorbents,” Food Technol., 21, 187–192 (1967).

    Google Scholar 

  127. Robson, E. M., “The vacuum use of molecular sieves and other desiccants,” Vacuum, 11, 10–15 (1961).

    Article  Google Scholar 

  128. Pfeiffer, D. C. and Macglashan, J., U.S. Patent 2,374,222, Divided application filed 1941 (1945).

    Google Scholar 

  129. Balzers, Patent-und Lizenz-Anstalt, U.K. Patent 910,059, Filed Germany, December, 1959 (1960).

    Google Scholar 

  130. Bath, H. H. A., Olejniczak, J. S., and Steckelmacher, W., “The Measurement of Water Vapour Pressure in Vacuum Systems Using a Quartz Crystal Oscillator,” Trans. of the 3rd International Vacuum Congress, Stuttgart 1965, Vol. 2, Part 2, pp. 381-392 (1967).

    Google Scholar 

  131. Strasser, J., “A possibility to control the drying process during drying by sublimation in vacuum by means of measuring the partial pressure of non-condensable gases,” Vakuum-Tech. 14, 181–185 (1965).

    Google Scholar 

  132. Mastenbroek, G. G. A., “The freeze-drying of mother’s milk,” (Harris, R. J. C, ed.) in Biological Applications of Freezing and Drying, pp. 177–183, Academic Press, New York (1954).

    Google Scholar 

  133. Smithies, W. R. and Blakley, T. S., “Design of freeze-drying equipment for the dehydration of foodstuffs,” Food Technol. 13, 610–614 (1959).

    Google Scholar 

  134. Levinson, S. O. and Oppenheimer, F., U.S. Patent 2,445,120, Filed September, 1947 (1948).

    Google Scholar 

  135. Lundquist, E. B., “Application of thermal infrared radiation as a heat source in the freeze-drying of liquid food materials,” Diss. Abstr., 25, 1141–1142 (1964).

    Google Scholar 

  136. Oppenheimer, F., U.S. Patent 3,271,874, Filed January, 1965 (1966).

    Google Scholar 

  137. Oldenkamp, H. A. and Small, R. F., U.S. Patent 3,199,217, Filed March, 1962 (1965).

    Google Scholar 

  138. Mehrlich, F. P. and Haugh, R. R., U.S. Patent 3,169,070, Filed April, 1961 (1965).

    Google Scholar 

  139. Rowe, T. W. G., U.K. Patent 922,493, Filed April, 1961 (1963).

    Google Scholar 

  140. Brynko, C. and Smithies, W. R., “Rapid vacuum freeze-drying of meat,” J. Sci. Food Agric., 9, September, 576–583 (1958).

    Article  Google Scholar 

  141. Jeppson, M. R., U.S. Patent 3,222,796, Filed June, 1962 (1965).

    Google Scholar 

  142. Greaves, R. I. N., “The application of heat to freeze-drying systems,” Ann. N.Y. Acad. Sci. 85, Art. 2, 682–688 (1960).

    Article  Google Scholar 

  143. Hackenberg, V., U.S. Patent 3,234,658, Filed February, 1963 (1966).

    Google Scholar 

  144. Dalgleish, J. McNair, U.K. Patent 928,925, Filed April, 1962 (1963).

    Google Scholar 

  145. Fox, H., “Tumbler freeze-dryer,” Food Mf., 40, no. 3, 58–61 (1965).

    Google Scholar 

  146. Rockwell, W. C., Kaufman, V. F., Lowe, E., and Morgan, A. I. Jr., “Hextube freeze-dryer permits continuous F-D,” Food Engng., 37, no. 4, 49–51 (1965).

    Google Scholar 

  147. Hansen, O., “Development of Continuous Freeze-Drying Equipment for Liquids and Powdered Materials,” 2nd International Congress of Food Science and Technology, Warsaw, August, 1966.

    Google Scholar 

  148. Decareau, R. V., “How microwaves speed freeze-drying,” Food Engng., 33, no. 8., 34–36 (1961).

    Google Scholar 

  149. Copson, D. A., “The Technology of Microwave Freeze-Dried Foods,” in Microwave Healing, pp. 235-260, Avi Publishing Co. (1962).

    Google Scholar 

  150. Meryman, H. T., “The preparation of biological specimens by freeze-drying,” Curator, 3, 5–19 (1960).

    Article  Google Scholar 

  151. Harris, R. H., “Vacuum dehydration and freeze drying of entire biological specimens,” Ann. Mag. Nat. Hist., Ser. 13, 7, 65–74 (1964).

    Google Scholar 

  152. Harris, R. H., “A new apparatus for freeze-drying whole biological specimens,” Med. Biol. Illust., 18, 180–182 (1968).

    Google Scholar 

  153. Simatos, D., “L’eau et les formes de liaison de l’eau dans les produits lyophilisés,” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 235–252, Hermann, Paris (1964).

    Google Scholar 

  154. Nei, T., Araki, T., and Souzu, H., “Studies of the effect of drying conditions on residual moisture content and cell viability in the freeze-drying of microorganisms,” Cryobiology, 2, 68–73 (1965).

    Article  Google Scholar 

  155. Calloway, D. H., “Dehydrated foods,” Nutr. Rev. 20, 257–260 (1962).

    Article  Google Scholar 

  156. Berlin, E., Kliman, P. G., and Pallansch, M. J., “Surface areas and densities of freeze-dried foods,” J. Agric. Food Chem., 14, 15–17 (1966).

    Article  Google Scholar 

  157. Bishov, S. J., Henick, A. S., and Koch, R. B., “Oxidation of fat in model systems related to dehydrated foods,” Food Res., March–April, 25, 174–182 (1960).

    Article  Google Scholar 

  158. Greiff, D. and Rightsel, W. A., “Stability of suspensions of influenza virus dried to different contents of residual moisture by sublimation in vacuo,” Appl. Microbiol. 16, 835–840 (1968).

    Google Scholar 

  159. Greiff, D., Department of Pathology, Marquette School of Medicine, Milwaukee, Wisconsin 53233 (personal communication).

    Google Scholar 

  160. Greiff, D. and Rightsel, W. A., “An accelerated storage test for predicting the stability of suspensions of measles virus dried by sublimation in vacuo,” J. Immun., 94, 395–400 (1965).

    Google Scholar 

  161. Tootill, J. P. R., “A slope-ratio design for accelerated storage tests,” J. Pharm. Pharmacol. 13, Supplement, 75T-86T, December (1961).

    Google Scholar 

  162. MacKenzie, A. P., Limited Frede-Drying, 11th Annual Meeting of the Biophysical Society, Houston, Texas, February 22-24, 1967.

    Google Scholar 

  163. Rey, L., “L’humidité résiduelle des produits lyophilisés: nature—Origine et méthodes d’étude,” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Developments in Freeze-Drying, pp. 199–234, Hermann, Paris (1964).

    Google Scholar 

  164. Kaplan, C., Department of Microbiology, The University, Reading, Berkshire (personal communication).

    Google Scholar 

  165. Malpas, E. W., The Stoppering of Containers in Vacuum, Proc. 4th Int. Vaccum Congr., pp. 759-762, Manchester, England (1968).

    Google Scholar 

  166. Fidler, F., “Packaging of freeze-dried foods,” Food Trade Rev., 34, no. 5, 40–44, 46 (1964).

    Google Scholar 

  167. Wallis, C, Melnick, J. L., and Rapp, F., “Different effects of MgCl2 and MgSO4 on the thermostability of viruses,” Virology, 26, 694–699 (1965).

    Article  Google Scholar 

  168. Anon. “Freeze-dried ice cream,” Food Process./Marketing, 27, (1), 32, January (1966).

    Google Scholar 

  169. Anon. “Freeze-dried peaches and corn flakes,” Canner/Pckr, 135, no. 1, 87 (1966).

    Google Scholar 

  170. Hackenberg, V., U.S. Patent 3,238,633, Filed June, 1963 (1966).

    Google Scholar 

  171. Hackenberg, V., German Patent 1,196,128, Filed January, 1962 (1965).

    Google Scholar 

  172. Delia Porta, P. and Rowe, T. W. G., “A new range of pharmaceutical freeze-driers,” Vide, 16, no. 91, 54–63 (1961).

    Google Scholar 

  173. Hyatt, G. W., “La Banque des Tissus d’Origine Humaine,” (Rey, L. R., ed.) in Traité de Lyophilisation, pp. 179–252, Hermann, Paris (1960).

    Google Scholar 

  174. Bassett, C. A. L., “Tissue banks: a survey of the current status of tissue procurement, processing, and use” (Rey, L. R., ed.) in Aspects théoriques et industriels de la Lyophilisation: Researches and Development in Freeze-Drying, pp. 431–449, Hermann, Paris (1964).

    Google Scholar 

  175. Dexter, F., “The preservation of tissue for surgical transplantation and, subsequent formation of a tissue bank,” J. Sci. Technol., 11, no. 4, Part 1, 149–166, 12, no. 1, Part, 2, 1-30 (1965, 1966).

    Google Scholar 

  176. Sjöstrand, F. S., “Freeze-drying of tissues for cell analysis by light and electron microscopy,” (Harris, R. J. C, ed.) in Freezing and Drying, pp. 177–188, Inst. Biol., London (1951)

    Google Scholar 

  177. Pearse, A. G. E., “Rapid freeze-drying of biological tissues with a thermoelectric unit,” J. Scient. Instrum., 40, 176–177 (1963).

    Article  Google Scholar 

  178. Rowe, T. W. G., “A Thermoelectric Freeze-dryer for Tissue”, 1963 Transactions the 10th National Vacuum Symposium, American Vacuum Society, pp. 54-58, Pergamon Press (1963).

    Google Scholar 

  179. Moor, H., “Die Gefrierfixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie,” Z. Zellforsch. mikrosk. Anat., 62, 546–580 (1964).

    Article  Google Scholar 

  180. Steere, R. L., “Electron microscopy of structural detail in frozen biological specimens,” J. Biophys. Biochem. Cytol., 3, 45–60 (1957).

    Article  Google Scholar 

  181. Hall, C. E., “A low temperature replica method for electron microscopy,” J. Appl. Phys. 21, 61–62 (1950).

    Article  Google Scholar 

  182. Bullivant, S. and Ames, A., “A simple freeze-fracture replication method for electron microscopy,” J. Cell Biol., 29, 435–447 (1966).

    Article  Google Scholar 

  183. Collins, J. M., Boyce, J. J., and Edgar, A. W., “Preparation of a living vaccine from continuous culture produced cells,” J. Appl. Bact., 29, 401 (1966).

    Article  Google Scholar 

  184. Ionescu, M. I., Scott, O., and Wooler, G. H., “Surgical treatment of a cyanotic double-outlet right ventricle,” Thorax, 22, 236–243 (1967).

    Google Scholar 

  185. Smithies, W. R., “Freeze-drying of meat and meat products,” (Rey, L., ed.) in Advances in Freeze-Drying, pp. 177–190, Hermann, Paris (1966).

    Google Scholar 

  186. Mellor, J. D. and Lovett, D. A., “Flow of gases through channels with reference to porous materials,” Vacuum 18, 625–627 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rowe, T.W.G. (1970). Freeze-Drying of Biological Materials: Some Physical and Engineering Aspects. In: Smith, A.U. (eds) Current Trends in Cryobiology. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9933-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9933-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9935-4

  • Online ISBN: 978-1-4757-9933-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics