Neuronal Control of Vocal Production in Non-Human and Human Primates

  • Uwe Jürgens

Abstract

Vocal production is organized on different levels of complexity. The lowest level is represented by vocal reactions that are genetically determined in their acoustic structure and are elicited in a reflex-like manner by external or internal stimuli. An example is pain shrieking. A heavy blow against the body, for instance, will elicit shrieking from birth on. A monkey or human infant does not need to hear shrieking from other conspecifics in order to be able to produce it: even deaf infants shriek (Eibl-Eibesfeldt, 1973; Winter et al., 1973). There is also no need for prior experience with such a stimulus in the form of a pairing with another, unconditioned stimulus in the Pavlovian sense.

Keywords

Anterior Cingulate Cortex Squirrel Monkey Primary Motor Cortex Acoustic Structure Vocal Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, P.G., 1981, Cortical control of conditioned and spontaneous vocal behavior in rhesus monkeys, Brain Lang. 13: 171–184.PubMedCrossRefGoogle Scholar
  2. Andrew, J., Fowler, C. J., and Harrison, M. J. G., 1983, Stereotaxic thalamotomy in 55 cases of dystonia, Brain 106: 981–1000.PubMedCrossRefGoogle Scholar
  3. Bazett, H.C. and Penfield, W.G., 1922, A study of the Sherrington decerebrate animal in the chronic as well as the acute condition, Brain 45: 185–265.CrossRefGoogle Scholar
  4. Beckstead, R.M., Morse, J.R., and Norgren, R., 1980, The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei, J. Comp. Neurol. 190: 259–282.PubMedCrossRefGoogle Scholar
  5. Beitz, A.J., 1982, The organization of afferent projections to the midbrain periaqueductal gray of the rat, Neuroscience 7: 133–159.PubMedCrossRefGoogle Scholar
  6. Bell, D.S., 1968, Speech functions of the thalamus inferred from the effects of thalamotomy, Brain 91: 619–638.PubMedCrossRefGoogle Scholar
  7. Botez, M.I. and Carp, N., 1968, Nouvelles données sur le problème du mécanisme de déchlenchement de la parole, Reis. Rouen. Neurol. 5: 153–158.Google Scholar
  8. Dressnandt, J. and Jürgens, U., 1992, Brain stimulation-induced changes of phonation in the squirrel monkey, Exp. Brain Res. 89: 549–559.PubMedCrossRefGoogle Scholar
  9. Eibl-Eibesfeldt, I., 1973, The expressive behaviour of the deaf-and-blind-born, in:“Social Communication and Movement”. M. Von Cranach and I. Vine, eds., Academic Press, London.Google Scholar
  10. Foerster, O., 1936, Motorische Felder und Bahnen, in:“Handbuch der Neurologie”, 0. Bumke und 0. Foerster, eds., Springer, Berlin.Google Scholar
  11. Groswasser, Z., Korn, C., Groswasser-Reider, I., and Solzi, P., 1988, Mutism associated with buccofacial apraxia and bihemispheric lesions, Brain Lang. 34: 157–168.PubMedCrossRefGoogle Scholar
  12. Gurd, J.M., Bessell, N.J., Bladon, R.A.W., and Bamford, J.M., 1988, A case of foreign accent syndrome, with follow-up clinical, neuropsychological and phonetic descriptions. Neuropsychologia 26: 237–251.PubMedCrossRefGoogle Scholar
  13. Harmann, P.A., Carlton, S.M., and Willis, W.D., 1988, Collaterals of spinothalamic tract cells to the periaqueductal gray: a fluorescent double-labeling study in the rat, Brain Res. 441: 87–97PubMedCrossRefGoogle Scholar
  14. Hayes, K.J, and Hayes, C., 1951, The intellectual development of a home-raised chimpanzee, Proceed. Amer. Philos. Soc. 95: 105–109.Google Scholar
  15. Hepp-Reymond, M.-C. and Wiesendanger, M., 1972, Unilateral pyramidotomy in monkeys. Effect on force and speed of a conditioned precision grip, Brain Res. 36: 117–131.PubMedCrossRefGoogle Scholar
  16. Holstege, G., 1989, Anatomical study of the final common pathway for vocalization in the cat, J. Comp. Neural. 284: 242–252.CrossRefGoogle Scholar
  17. Holstege, G., Kuypers, H.G.J.M., and Dekker, J.J., 1977, The organization of the bulbar fibre connections to the trigeminal facial and hypoglossal motor nuclei. II. An autoradiographic tracing study in cat, Brain 100: 265–286.CrossRefGoogle Scholar
  18. Jürgens, U., 1976, Projections from the cortical larynx area in the squirrel monkey, Exp. Brain Res. 25: 401–411.PubMedCrossRefGoogle Scholar
  19. Jürgens, U., 1986. The squirrel monkey as an experimental model in the study of cerebral organization of emotional vocal utterances. Eta-.4rch. Psvchiatr. Neurol. Sci. 236: 40–43.CrossRefGoogle Scholar
  20. Jürgens, U., Kirzinger, A., and von Cramon, D., 1982, The effects of deep-reaching lesions in the cortical face area on phonation. A combined case report and experimental monkey study, Cortex 18: 125–140PubMedGoogle Scholar
  21. Jürgens, U. and Müller-Preuß, P., 1977, Convergent projections of different limbic vocalization areas in the squirrel monkey, Exp. Brain Res. 29: 75–83.PubMedCrossRefGoogle Scholar
  22. Jürgens, U., and Pratt, R., 1979a, Role of the periaqueductal grey in vocal expression of emotion, Brain Res. 167: 367–378.PubMedCrossRefGoogle Scholar
  23. Jürgens, U. and Pratt, R., 1979b, The cingular vocalization pathway in the squirrel monkey, Exp. Brain Res. 34: 499–510.PubMedCrossRefGoogle Scholar
  24. Jürgens, U. and von Cramon, D., 1982, On the role of the anterior cingulate cortex in phonation: a case report, Brain Lang. 15: 234–248.PubMedCrossRefGoogle Scholar
  25. Kellogg, W.N., 1968, Communication and language in the home-raised chimpanzee, Science 162: 423–427PubMedCrossRefGoogle Scholar
  26. Kent, R.D., Netsell, R., and Abbs, J.H., 1979, Acoustic characteristics of dysarthria associated with cerebellar disease, J. Speech Hear. Res. 22: 627–648.PubMedGoogle Scholar
  27. Kirzinger, A., 1985, Cerebellar lesion effects on vocalization of the squirrel monkey, Behay. Brain Res. 16: 177–181.CrossRefGoogle Scholar
  28. Kirzinger, A. and Jürgens, U., 1985, The effects of brain stem lesions on vocalization in the squirrel monkey, Brain Res. 358: 150–162.PubMedCrossRefGoogle Scholar
  29. Kirzinger, A. and Jürgens, U., 1991, Vocalization-correlated single-unit activity in the brain stem of the squirrel monkey, Exp. Brain Res. 84: 545–560.PubMedCrossRefGoogle Scholar
  30. Krayenbühl, H., Siegfried, J., and Yasargil, M. G., 1963, Résultats tardifs des opérations stéréotaxiques dans le traitement de la maladie de Parkinson, Rev. Neurologique 108: 485–494.Google Scholar
  31. Kuypers, H.G.J.M., 1958a, Corticobulbar connexions to the pons and lower brain-stem in man, Brain 81: 364–388.PubMedCrossRefGoogle Scholar
  32. Kuypers, H.G.J.M., 1958b, Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee, J. Comp. Neurol. 110: 221–255.PubMedCrossRefGoogle Scholar
  33. Kuypers, H.G.J.M., 1981, Anatomy of the descending pathways, in: “Handbook of Physiology. The Nervous System. Vol. II. Motor Control, Part I.”, J.M. Brookhart, V.B. Mountcastle, V.B. Brooks, and S.R. Geiger, eds., American Physiological Society, Bethesda, Md.Google Scholar
  34. Lechtenberg, R. and Gilman. S. 1978, Speech disorders in cerebellar disease, Ann. Neurol. 3: 285–290PubMedCrossRefGoogle Scholar
  35. Leicester, J., 1980, Central deafness and subcortical motor aphasia, Brain Lang. 10: 224–242.PubMedCrossRefGoogle Scholar
  36. Luschei, E. S. and Goodwin, G. M., 1975, Role of monkey precentral cortex in control of voluntary jaw movements, J. Neurophvsiol. 38: 146–157.Google Scholar
  37. MacLean, P.D. and Newman, J.D., 1988, Role of midline frontolimbic cortex in production of the isolation call of squirrel monkeys, Brain Res. 450: 111–123.PubMedCrossRefGoogle Scholar
  38. Mantyh, P.W., 1982. The ascending input to the midbrain periaqueductal gray of the primate, J. camp. Neurol. 211: 50–64.CrossRefGoogle Scholar
  39. Meller, S.T. and Dennis, B.J., 1986, Afferent projections to the periaqueductal gray in the rabbit, Neuroscience 19: 927–964.PubMedCrossRefGoogle Scholar
  40. Metter, E.J., Jackson, C., Kempler, D., Riege, W. H., Hanson, W.R., Mazziotta, J.C., and Phelps, M.E., 1986, Left hemisphere intracerebral hemorrhages studied by (F-18)-fluordeoxyglucose PET, Neurology 36: 1155–1162.PubMedCrossRefGoogle Scholar
  41. Monnier, M. and Willis, H., 1953, Die integrative Tätigkeit des Nervensystems beim meso-rhombo-spinalen Anencephalus (Mittelhirnwesen), Monatsschr. Psychiat. Neurol. 126: 239–273.CrossRefGoogle Scholar
  42. Müller-Preuß, P., and Jürgens, U., 1976, Projections from the “cingular” vocalization area in the squirrel monkey, Brain Res. 103: 29–43.PubMedCrossRefGoogle Scholar
  43. Newman, D.B., Hilleary, S.K., and Ginsberg, C. Y., 1989, Nuclear terminations of corticoreticular fiber systems in rats, Brain Behay. Evol. 34: 223–264.CrossRefGoogle Scholar
  44. Owren, M.J.; Dieter, J.A., Seyfarth, R.M., and Cheney, D.L., 1992, “Food calls” produced by adult female rhesus (Macaca mulatta) and Japanese (M. fuscata) macaques, their normally-raised offspring, and offspring cross-fostered between species, Behaviour 120: 218–231.Google Scholar
  45. Samra, K., Riklan, M., Levita, E., Zimmerman, J., Waltz, J.M., Bergmann, L., and Cooper, I.S., 1969, Language and speech correlates of anatomically verified lesions in thalamic surgery for parkinsonism, J. Speech Hearing Res. 12: 510–540.PubMedGoogle Scholar
  46. Sirisko, M.A. and Sessle, B.J., 1983, Corticobulbar projections and orofacial and muscle afferent inputs of neurons in primate sensorimotor cerebral cortex, Exp. Neurol. 82: 716–720.PubMedCrossRefGoogle Scholar
  47. Sutton, D., 1979, Mechanisms underlying learned vocal control in primates, in: “Neurobiology of Social Communication in Primates: An Evolutionary Perspective”, H.D. Steklis and M.J. Raleigh, eds., Academic Press, New York.Google Scholar
  48. Sutton, D., Larson, C., and Lindeman. R.C. 1974, Neocortical and limbic lesion effects on primate phonation, Brain Res. 71: 61–75.PubMedCrossRefGoogle Scholar
  49. Sutton, D., Larson, C., Taylor, E. M., and Lindeman, R. C., 1973, Vocalization in rhesus monkeys: conditionability, Brain Res. 52: 225–231.PubMedCrossRefGoogle Scholar
  50. Szentägothai, J. and Rajkovits, K., 1958, Der Hirnnervenanteil der Pyramidenbahn und der prämotorische Apparat motorischer Hirnnervenkerne,. 4rch. Psychiat. Nervenkr. 197: 335–354.CrossRefGoogle Scholar
  51. Thorns, G. and Jürgens, U., 1987, Common input of the cranial motor nuclei involved in phonation in squirrel monkey, Exp. Neuroi. 95: 85–99.CrossRefGoogle Scholar
  52. Travers, J.B. and Norgren, R., 1983, Afferent projections to the oral motor nuclei in the rat, J. Comp. Neurol. 220: 280–298.PubMedCrossRefGoogle Scholar
  53. Wiesendanger, M., 1981, The pyramidal tract. Its structure and function. in: “Handbook of Behavioral Neurobiology. Vol. 5: Motor Coordination”, A.L. Towe, and E.S.C. Luschei, eds., Plenum, New York.Google Scholar
  54. Winter, P., Handley, P., Ploog, D., and Schott, D., 1973, Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation, Behaviour 47: 230–239.PubMedCrossRefGoogle Scholar
  55. Yezierski, R.P., Sorkin, L.S., and Willis, W. D., 1987, Response properties of spinal neurons projecting to midbrain or midbrain-thalamus in the monkey, Brain Res. 437: 165–170.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Uwe Jürgens
    • 1
  1. 1.German Primate CenterGöttingenGermany

Personalised recommendations