Coherent and Ultracoherent States in Hubbard and Related Models

  • K. A. Penson
  • A. I. Solomon


We consider the Hubbard model and extensions on bipartite lattices. We define a dynamical group based on the η-pairing operators introduced by Yang, and define coherent pairing states, which are combinations of eigenfunctions of η operators. The coherent states are defined through the exponentiation of η-operators. In addition we introduce the so-called ultracoherent states through exponentiation of certain functions of η-operators. The coherent states permit exact calculation of numerous physical properties of the system, including energy, various fluctuation and correlation functions, as well as pairing off-diagonal long-range order (ODLRO) to all orders. This approach is complementary to that of BCS, in that these are superconducting coherent states associated with the exact model, while not eigenstates of the Hamiltonian.


Coherent State Hubbard Model Spin Coherent State Variational Wave Function True Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963);CrossRefGoogle Scholar
  2. J. Hubbard, Proc. R. Soc. London Ser. 277, 237 (1964).CrossRefGoogle Scholar
  3. 2.
    The Hubbard Model—a reprint volume,edited by A. Montorsi (World-Scientific, Singapore, 1992).Google Scholar
  4. 3.
    A. Danani, M. Rasetti, and A. I. Solomon, in Theories of Matter, edited by A. I. Solomon, M. Balkanski, and H. R. Trebin ( World Scientific, Singapore, 1994 ).Google Scholar
  5. 4.
    C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989).CrossRefGoogle Scholar
  6. 5.
    J. M. Radcliffe, J. Phys. A 4, 313 (1971).CrossRefGoogle Scholar
  7. 6.
    S. V. Yablonsky, Introduction to Discrete Mathematics ( Mir Publishers, Moscow, 1989 )Google Scholar
  8. 7.
    J. Riordan, Combinatorial Identities ( John Wiley, New York, 1968 ).Google Scholar
  9. 8.
    L. Comtet, Advanced Combinatorics (D. Reidel, Dodrecht, Holland, 1974 ).Google Scholar
  10. 9.
    J. R. Schrieffer, Theory of Superconductivity (Benjamin, New York, 1964 ).Google Scholar
  11. 10.
    K. A. Penson, and M. Kolb, Phys. Rev. B 33, 1663 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • K. A. Penson
    • 1
  • A. I. Solomon
    • 2
    • 3
  1. 1.Laboratoire de Physique Théorique des LiquidesUniversité Pierre et Marie Curie-CNRSParis Cedex 05France
  2. 2.Laboratoire de Gravitation et Cosmologie RelativistesUniversité Pierre et Marie Curie-CNRSParis Cedex 05France
  3. 3.Faculty of Mathematics and ComputingThe Open UniversityMilton KeynesUK

Personalised recommendations