Advertisement

Bond-Order-Wave versus Spin-Density-Wave Dimerization in Polyacetylene

  • G. M. Pastor
  • M. B. Lepetit

Abstract

The dimerization of polyacetylene is studied in the framework of a distance dependent Hubbard Hamiltonian for the valence π electrons. The underlying one-dimensional many-body problem is solved numerically using the density matrix renormalization group (DMRG) method and the resulting ground-state energy is optimized in order to determine the dimerization δ and the average bond-length . The strength of the Coulomb repulsion U/t is varied from the uncorrelated or Hückel limit all over to the strongly correlated or Heisenberg case. While is not significantly affected by the value of U/t, δ shows a remarkable non-monotonic behavior. The differences between the bond-order-wave (small U/t) and the spin-Peierls (large U/t) regimes are discussed.

Keywords

Near Neighbor Coulomb Repulsion Infinite Chain Ethylene Molecule Density Matrix Renormalization Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for instance, H. C. Longuet-Higgins and L. Salem, Proc. R. Soc. London, Ser. A 25, 172 (1959);Google Scholar
  2. W. P. su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979);CrossRefGoogle Scholar
  3. A. Karpfen and J. Petkov, Solid State Commun. 29, 251 (1979);CrossRefGoogle Scholar
  4. S. Suhai, Chem. Phys. Lett. 96, 619 (1983);CrossRefGoogle Scholar
  5. M. Takahashi and J. Paldus, Int. J. Quantum Chem. 28, 459 (1985);CrossRefGoogle Scholar
  6. C. M. Liegener, J. Chem. Phys. 88, 6999 (1988);CrossRefGoogle Scholar
  7. S. R. Chubb, Phys. Rev. Lett. 62, 2016 (1989);CrossRefGoogle Scholar
  8. G. König and G. Stollhoff, Phys. Rev. Lett. 65, 1239 (1990);CrossRefGoogle Scholar
  9. J. Ashkenazi et al., J. Chem. Phys. 104, 8553 (1996).Google Scholar
  10. 2.
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).CrossRefGoogle Scholar
  11. S. Capponi et al., Chem. Phys. Lett. 255, 238 (1996).Google Scholar
  12. 4.
    M. B. Lepetit and G. M. Pastor, Phys. Rev. B 56, 4447 (1997).CrossRefGoogle Scholar
  13. 5.
    M. Said, D. Maynau, J. P. Malrieu, and M. A. Garcia Bach, J. Am. Chem. Soc. 106, 571 (1984);CrossRefGoogle Scholar
  14. M. Said, D. Maynau, J. P. Malrieu, and M. A. Garcia Bach, J. Am. Chem. Soc. 106, 580 (1984).CrossRefGoogle Scholar
  15. 6.
    S. R. White, Phys. Rev. Lett. 69, 2863 (1992);CrossRefGoogle Scholar
  16. S. R. White, Phys. Rev. B 48, 10345 (1993).CrossRefGoogle Scholar
  17. 7.
    C. S. Yannoni and T. C. Clarke, Phys. Rev. Lett. 51, 1191 (1983);CrossRefGoogle Scholar
  18. II. Kahlert, O. Leitner, and G. Leising, Synthetic Metals 17, 467 (1987).CrossRefGoogle Scholar
  19. 8.
    For finite U minor differences result from the fact that we fit t(r ij) by using the Hubbard Hamiltonian.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • G. M. Pastor
    • 1
  • M. B. Lepetit
    • 1
  1. 1.Laboratoire de Physique Quantique Unité Mixte de Recherche 5626 du CNRSUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations