Electronic Theory of Colossal Magnetoresistance Materials

  • R. Allub
  • B. Alascio


We study a model based on the double exchange mechanism and diagonal disorder to calculate magnetization and conductivity for La1−x Sr x MnO3 type crystals as a function of temperature. The model represents each Mn4+ ion by a spin
, on which an electron can be added to produce Mn3+. We include a hopping energy t, and a strong intra-atomic exchange interaction J. To represent in a simple way the effects of disorder we assume a Lorentzian distribution of diagonal energies of width F at the Mn sites. We calculate the mobility edge and the Fermi level as functions of magnetization. We add the spin entropy to build up the free energy of the system. In the strong coupling limit, Jt, Γ, the model results can be expressed in terms of t and F only. We use the results of the model to draw “phase diagrams” that separate ferromagnetic from paramagnetic states and also “insulating” states where the Fermi level falls in a region of localized states from “metallic” where the Fermi level falls in a region of extended states. We then add the contributions to the conductivity of extended states to those of localized states to calculate the resistivity for different concentrations and the magnetoresistance. We conclude that the model can be used successfully to represent the transport properties of the systems under consideration.


Extended State Localization Length Double Exchange Electronic Theory Mobility Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. von Helmholt, et al., Phys. Rev. Lett. 71, 2331 (1993).CrossRefGoogle Scholar
  2. 2.
    G. H. Jonker and J. H. van Santen, Physica 16, 337 (1950); J. H. van Santen and G. H. Jonker, Physica 16, 599 (1950).CrossRefGoogle Scholar
  3. 3.
    C. Zener, Phys. Rev. 82, 403 (1951).CrossRefGoogle Scholar
  4. 4. P. W. Anderson and H. HasegawaPhys. Rev. 100, 675 (1955).Google Scholar
  5. 5.
    P. G. de Gennes, Phys. Rev. 118, 141 (1960).CrossRefGoogle Scholar
  6. 6.
    K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972).CrossRefGoogle Scholar
  7. 7.
    J. Mazzaferro, C. A. Balseiro, and B. Alascio, J. Phys. Chem. Solids 46, 1339 (1985).CrossRefGoogle Scholar
  8. Y. Okimoto et al., Phys. Rev. Lett. 75, 109 (1995); S. W. Clieong et al. Proceedings of the Physical Phenomena at High Magnetic Fields-II Conference, Tallahassee, Florida. World Scientific, to be published; M. C. Martin et al.,to be published; R. Mahendiran, R. Mahesh, A. K. Raichaudlniri, and C. N. R. Rao, Solid State Commun. 94 515 (1995); H. L. Ju et al., Phys. Rev. B 51 6143 (1995); M. K. Gubkin et al., JETP Lett. 60 57 (1994).Google Scholar
  9. 9.
    N. Furukawa, J. Phys. Soc. Jpn. 63, 3214 (1994).CrossRefGoogle Scholar
  10. 10.
    A. J. Millis, P. B. Littlewood, and B. I. Shrainman, Phys. Rev. Lett. 74, 5144 (1995).CrossRefGoogle Scholar
  11. 11.
    R. Allub and B. Alascio, Solid State Commun. 99, 613 (1996).CrossRefGoogle Scholar
  12. 12.
    E. Müller-Hartmann and E. Dagotto, to appear in Phys. Rev. B,preprint condmat/9605041.Google Scholar
  13. Y. Tokura et al., J. Phys. Soc. Jpn. 63 3931 (1994).Google Scholar
  14. 14.
    Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B 51, 16491 (1995).CrossRefGoogle Scholar
  15. 15.
    See, e.g.,E. N. Economou, Green’s Functions in Quantum Physics,edited by P. Fulde, Springer Series in Solid State Sciences (Springer-Verlag, Berlin), Vol. 7.Google Scholar
  16. 16.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefGoogle Scholar
  17. 17.
    D. C. Licciardello and E. N. Economou, Phys. Rev. 11, 3697 (1975).CrossRefGoogle Scholar
  18. 18.
    P. Lloyd, J. Phys. C 2, 1717 (1969).CrossRefGoogle Scholar
  19. 19.
    J. M. Ziman, J. Phys. C 2, 1230 (1969).CrossRefGoogle Scholar
  20. 20.
    A. A. Aligia Ph.D. Thesis, Instituto Balseiro, 1984.Google Scholar
  21. 21.
    N. F. Mott and E. A. Davies, Electronic Processes in Non-Crystalline Materials (Oxford University Press, 1971 ).Google Scholar
  22. H. Y. Hwang, et al., Phys. Rev. Lett. 75 914 (1995)Google Scholar
  23. 23.
    H. Kuwahara, Science 270, 961 (1995).CrossRefGoogle Scholar
  24. 24.
    Guo-meng Zhao, K. Corder, H. Keller, and K. A. Muller, Nature 381, 676, (1996).CrossRefGoogle Scholar
  25. J. Briatico et al., Czechoslovak J. Phys. 46 S4 2013 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. Allub
    • 1
  • B. Alascio
    • 1
  1. 1.Centro Atómico BarilocheSan Carlos de BarilocheArgentina

Personalised recommendations