Study of Deep Level Defect in Polycrystalline Cadmium Sulfide Films

  • U. Pal
  • R. Silva González
  • F. Donado
  • M. L. Hernández
  • J. M. Gracia-Jiménez

Abstract

Photoluminescence (PL) spectroscopy is used to study the deep defect levels in CdS films grown by chemical bath deposition (CBD) and thermal evaporation (TE) techniques. The characteristics of PL bands and their evolution are studied mainly in three different types of (a) near stoichiometrically grown CBD (there after CBD-a), (b) off stoichiometrically grown CBD (there after CBD-b), and (c) near stoichiometrically grown TE samples to identify the origin of different defect levels in them. In general, TE filins present more distinct features in PL spectra than the CBD filins especially in the subband edge spectral region, indicating a lower concentration of defect states in them. A remarkable change in composition on thermal treatment (TT) of CBD-b [there after CBD-b (TT)] filins is observed along with the usual change in phase (cubic to hexagonal). It has been observed that the green emission (GE) band is more related to the crystalline phase of the films than to their chemical composition. The evolutions of other low energy emissions, e.g., so-called red emission (RE) and yellow emissions (YE) on temperature and film composition are studied.

Keywords

Thermal Evaporation Chemical Bath Deposition Yellow Emission Deep Level Defect Thermal Evaporation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Britt and C. Ferekids, Appl. Phys. Lett. 62, 2851 (1993).CrossRefGoogle Scholar
  2. Ch. Bouchenaki et al., J. Cryst. Growth 101, 797 (1990).Google Scholar
  3. O. Zelaya-Angel et al.,.Solid State Commun. 94, 81 (1995).Google Scholar
  4. 4.
    -0314 ASTM X-Ray Powder Data File.Google Scholar
  5. 5.
    J. Woods and K. H. Nocholas, Br. J. Appl. Phys. 15, 1361 (1964).CrossRefGoogle Scholar
  6. 6.
    M. K. Sheinkman, I. B. Ermolovich, and G. L. Belen’kill, Soy. Phys. Solid State 10, 2069 (1969).Google Scholar
  7. 7.
    P. Besomi and B. Wessels, J. Appl. Phys. 51, 4305 (1980).CrossRefGoogle Scholar
  8. 8.
    R.. H. Bube, Photoconductivity of Solids ( Wiley, New York, 1960 ).Google Scholar
  9. 9.
    G. Godrillo, Sol. Energy Mater. And Solar Cells 25, 41 (1992).CrossRefGoogle Scholar
  10. 10.
    S. Achour and G. H. Talat, Thin Solid Films 144, 1 (1986).CrossRefGoogle Scholar
  11. 11.
    M. Gracia-Jiménez, J. L. Martínez, E. Gómez, and A. Zehe, J. Electrochem. Soc. 131, 2974 (1984).CrossRefGoogle Scholar
  12. 12.
    M. Agata, H. Kurase, S. Hayashi, and K. Yamamoto, Solid State Commun. 76, 1061 (1990).CrossRefGoogle Scholar
  13. 13.
    R. Lozada-Morales and O. Zelaya-Angel, Thin Solid Films 281–282, 386 (1996).Google Scholar
  14. 14.
    P. Besomi and B. Vesseles, J. Appl. Phys. 51, 4305 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • U. Pal
    • 1
  • R. Silva González
    • 1
  • F. Donado
    • 1
  • M. L. Hernández
    • 1
  • J. M. Gracia-Jiménez
    • 1
  1. 1.Instituto de FísicaUniversidad Autonoma de PueblaPuebla, PueMexico

Personalised recommendations