First-Principles Langevin Molecular Dynamics Studies of Metallic and Semiconductor Clusters

  • Luis Carlos Balbás


The combination of Langevin molecular dynamics for simulated annealing with realistic quantum-mechanical interactions obtained from first-principles supercell calculations (within the pseudopotential plane-wave method and the local density approximation) is applied in this paper to examine the structural and electronic properties of (i) bimetallic PbNa n , (n ≤ 7) clusters, and (ii) pure and mixed Ge n Te m (0 ≤ n, m ≤ 3) clusters, as well as the diatomic molecules GeSe, PbSe and PbTe. In the case of bimetallic PbNa n , clusters the aim is to explain the exceptional abundance of PbNa6 observed in recent molecular beam experiments. It is found that adding another Na atom to PbNa6 is energetically less favorable than adding it to a pure sodium cluster, in contrast to what it is obtained for smaller PbNa n clusters. In the case of semiconductor clusters the aim is to compute their permanent dipole moments in the equilibrium geometry and in selected geometries near to equilibrium corresponding to states higher in energy by a few tens of meV. These dipole moments are compared with those estimated from recent experiments at room temperature.


Dipole Moment Local Density Approximation Equilibrium Geometry Apex Angle Permanent Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    wish to dedicate this work to Professor Karl-Heinz Bennemann physics and other important matters that I have learned from him. R. Car and M. Parrinello, Plays. Rev. Lett. 55, 2471 (1985).CrossRefGoogle Scholar
  2. 2.
    R. M. Wentzcovitch and J. L. Martins, Solid State Commun. 78, 831 (1991). 608 (1991).Google Scholar
  3. M. P. Allen and D. j. Wesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987 ).Google Scholar
  4. T. Arias et al., Phys. Rev. B 45, 1538 (1992).Google Scholar
  5. 5.
    D. M. Bylander and L. Kleinman, Phys. Rev. B 45, 9663 (1992).CrossRefGoogle Scholar
  6. 6.
    G. Kresse and J. Hafner, J. Non-Cryst. Solids 156–158, 956 (1993).Google Scholar
  7. 7.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
  8. 8.
    W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965); L. J. Sham and W. Kohn, Phys. Rev. B 145, 561 (1966).CrossRefGoogle Scholar
  9. 9.
    M. P. Allen and D. j. Wesley, Computer Simulation of Liquids ( Oxford University Press, Oxford, 1987 ).Google Scholar
  10. M. C. Payne et al., Rev. Mod. Ph.ys. 64, 1045 (1992).Google Scholar
  11. 11.
    D. K. Remler and P. A. Madden, Mol. Phys. 70, 921 (1990).CrossRefGoogle Scholar
  12. 12.
    G. Galli, J. Phys. Condens. Matter 5, B107 (1993).CrossRefGoogle Scholar
  13. 13.
    S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1983).CrossRefGoogle Scholar
  14. 14.
    R. Biswas and D. R. Hamann, Phys. Rev. B 34, 895 (1986).CrossRefGoogle Scholar
  15. 15.
    R. Kubo, Rep. Prog. Theor. Phys. 29, 255 (1996); S. A. Adelman and J. Doll, J. Chem. Phys. 64, 2375 (1976).CrossRefGoogle Scholar
  16. 16.
    N. Binggeli, J. L. Martins, and J. R. Chelikowsky, Phys. Rev. Lett. 68, 2956 (1992).CrossRefGoogle Scholar
  17. 17.
    N. Binggeli and J. R. Chelikowsky, Phys. Rev. B 50, 11 764 (1994).Google Scholar
  18. 18.
    J. R. Chelikowsky, N. Troullier, and N. Binggeli, Phys. Rev. B 49, 114 (1994).CrossRefGoogle Scholar
  19. 19.
    L. C. Balbâs and J. L. Martins, Phys. Rev. B 54, 2937 (1996).CrossRefGoogle Scholar
  20. 20.
    W. C. Davidon, Math. Progr. 9, 1 (1975).CrossRefGoogle Scholar
  21. 21.
    C. Yeretzian, U. Röthlisberger, and E. Schumacher. Chem. (1995).Google Scholar
  22. 22.
    R. Schäfer, S. Schlecht, J. Woenckhaus, and J. A. Becker, 471 (1996).Google Scholar
  23. 23.
    L. C. Balbâs, A. Rubio, and J. L. Martins, Z. Phys. D 40, 182 (1997).CrossRefGoogle Scholar
  24. 24.
    J. Hoeft, H. J. Lovas, E. Tiemann, and T. Törring, Z. Naturforsch. 25a, 539 (1970).Google Scholar
  25. 25.
    J. A. Alonso and L. C. Balbâs, in Structure and Bonding, edited by K. D. Sen, ( Springer-Verlag, Berlin, 1987 ), Vol. 66, p. 41.Google Scholar
  26. 26.
    J. L. Martins and M. L. Cohen, Phys. Rev. B 37, 6134 (1988).CrossRefGoogle Scholar
  27. 27.
    C. G. Broyden, Math. Comp. 19, 577 (1965).CrossRefGoogle Scholar
  28. 28.
    C. L. Fu and K. M. Ho, Phys. Rev. 28, 5480 (1983).CrossRefGoogle Scholar
  29. 29.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
  30. 30.
    L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).CrossRefGoogle Scholar
  31. 31.
    D. M. Ceperley and B. J. Adler, Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
  32. 32.
    J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  33. 33.
    S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).CrossRefGoogle Scholar
  34. 34.
    J. Chang, M. J. Stott, and J. A. Alonso, J. Chem. Phys. 104, 8043 (1996).CrossRefGoogle Scholar
  35. 35.
    M. Tegze and J. Hafner, Phys. Rev. B 39, 8263 (1989).CrossRefGoogle Scholar
  36. 36.
    C. Baladrón and J. A. Alonso, Ph.ysica B 154, 73 (1978); C. Yannouleas, P. Jena, and S. N. Khana, Phys. Rev. B 46, 9751 (1992).Google Scholar
  37. 37.
    I. Moullet, J. L. Martins, F. Reuse, and J. Buttet, Phys. Rev. B 42, 11 598 (1990).Google Scholar
  38. 38.
    J. L. Martins, R. Car, and J. Buttet, Surf. Sci. 106, 265 (1981).CrossRefGoogle Scholar
  39. W. D. Knight et al., Phys. Rev. Lett. 31 1804 (1985).Google Scholar
  40. A. Rubio et al., Phys. Rev. Lett. 77, 247 (1996).Google Scholar
  41. 41.
    M. S. Islam and A. K. Ray, Chem. Phys. Lett. 153, 496 (1988).CrossRefGoogle Scholar
  42. 42.
    K. Balasubramanian and D. Dai, J. Chem. Phys. 99, 5239 (1995).CrossRefGoogle Scholar
  43. 43.
    G. Igel-Mann, R. Schlunk, and H. Stoll, Mol. Phys. 80, 341 (1993).CrossRefGoogle Scholar
  44. 44.
    G. Herzberg, Molecular Spectra and Molecular Structure. Vol. I: Spectra of Diatomic Molecules, Second Edition (D. van Nostrand Company, Inc. New York, 1965 ).Google Scholar
  45. 45.
    Handbook of Chemistry and Physics, 58th edition ( CRC Press, Boca Raton, 1977 ).Google Scholar
  46. 46.
    For Te we take the recent experimental value of its electron affinity reported by G. Haeffler, A. E. Klinkmüller, J. Rangel, U. Berzinsh, and D. Hanstorp, Z. Phys. D 38, 211 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Luis Carlos Balbás
    • 1
  1. 1.Departamento de Física TeóricaUniversidad de ValladolidValladolidSpain

Personalised recommendations