Skip to main content

Spin Fluctuation Effects in High-T c Superconductors

  • Chapter
Current Problems in Condensed Matter

Abstract

By using a theory that includes antiferromagnectic short-ranged correlations, recent experiments on the high-transition temperature (high-T c ) cuprate superconductors like photoemission, tunneling measurements, and the doping dependence of T c can be understood. In particular for tnrclerdoped compounds, we find the formation of shadows of the Fermi surface, k-dependent pseudogap structures in the excitation spectrum and by considering interlayer effects a blocking of the c-axis charge transport as precursors of the antiferromagnetic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  CAS  Google Scholar 

  2. D. J. Scalapino, Phys. Rep. 250, 331 (1995).

    Article  Google Scholar 

  3. S. Chakravarty et al., Science 261, 337 (1993);

    Google Scholar 

  4. P. W. Anderson, Science 268, 1154 (1995);

    Article  CAS  Google Scholar 

  5. P. W. Anderson, Science 256, 1526 (1992).

    Article  CAS  Google Scholar 

  6. P. Aebi et al., Phys. Rev. Lett. 72, 2757 (1994).

    Article  CAS  Google Scholar 

  7. Z. X. Shen and D. S. Dessau, Phys. Rep. 253, 1 (1995).

    Article  Google Scholar 

  8. D. S. Marshall et al., Phys. Rev. Lett. 76, 4841 (1996);

    Google Scholar 

  9. A. G. Loeser et al.,to be published in Science.

    Google Scholar 

  10. D. S. Desau et al., Phys. Rev. Lett. 66, 2160 (1991).

    Google Scholar 

  11. J. M. Tranquada et al., Phys. Rev. B 46, 5561 (1992).

    Google Scholar 

  12. S. L. Cooper and K. E. Gray, in Physical Properties of High-T„ Superconductors IV, edited by D. M. Ginsberg ( World Scientific, Singapore, 1994 ).

    Google Scholar 

  13. Although the LSCO system has only one layer within a unit cell, the nearest-neighbor planes from different cells are antiferromagnetically correlated. However, this intercell coupling is much smaller than the bilayer effects in YBCO.

    Google Scholar 

  14. The FS of this model dispersion is similar to the LSCO system. Nevertheless we can draw similar physical conclusion by using bare dispersion that are more appropriate for YBCO or BSCCO or by taking a k-dependent EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGinaaaacaWG0bWaaSbaaSqaaiabgwQiEbqabaGcdaWa % daqaaiGacogacaGGVbGaai4CamaabmaabaGaam4AamaaBaaaleaaca % WG4baabeaaaOGaayjkaiaawMcaaiabgkHiTiGacogacaGGVbGaai4C % amaabmaabaGaam4AamaaBaaaleaacaWG5baabeaaaOGaayjkaiaawM % caaaGaay5waiaaw2faaiaaikdaaaa!4AF7!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ \frac{1}{4}{t_ \bot }\left[ {\cos \left( {{k_x}} \right) - \cos \left( {{k_y}} \right)} \right]2 $$.

    Google Scholar 

  15. O. K. Andersen et al., J. Phys. Chem. Solids 56, 1573 (1995).

    Google Scholar 

  16. We carefully checked the dependence of our results on U and t ,but found no physical significant changes in our data up to values of U = 6t and for t = 0.1 − 0.8t. However, t = 0.4t was suggested by LDA calculations for YBCO.

    Google Scholar 

  17. N. E. Bickers et al., Phys. Rev. Lett. 62, 961 (1989).

    Google Scholar 

  18. P. Monthoux et al., Phys. Rev. Lett. 72, 1874 (1994);

    Google Scholar 

  19. C. H. Bickers et al., Phys. Rev. Lett. 72, 1870 (1994);

    Google Scholar 

  20. T. Dahm et al., Phys. Rev. Lett. 74, 793 (1995).

    Google Scholar 

  21. S. Grabowski, M. Langer, J. Schmalian, and K. H. Bennemann, Europhys. Lett. 34, 219 (1996).

    Article  CAS  Google Scholar 

  22. In bilayer systems we only considered intraband Cooper formation. This refers to even parity pairing with respect to the bilayer inversion symmetry yielding Δ(k, ω) 0 and a larger T c than the odd (interband) pairing state with Δ(k, ω) = 0. See also J. Maly et al., Phys. Rev. B 53, 6786 (1996). The actual calculations were performed on a (64 × 64) square lattice with an energy resolution of 0.014t ≈ 4 meV. The numerical procedure is described in J. Schmalian, M. langer, S. Grabowski, and K. H. Bennemann, Comp. Phys. Comm. 93, 141 (1996).

    Google Scholar 

  23. Note that τ −1(k, ω) generates naturally an energy and consequently a temperature scale for the magnetic excitations. By comparing the doping dependence and the absolute magnitude of τ −1(k, ω) at the FS and the Fermi energy with the characteristic temperature T AF observed in transport measurements for LSCO by H. Y. Hwang et al., Phys. Rev. Lett. 72, 2636 (1994), we find an excellent agreement with the experimental data.

    Google Scholar 

  24. The reason for the optimal doping in our results is physically different from the antiferromagnetic van Hove scenario (AFVH) by Dagotto et al., Phys. Rev. Lett. 74, 310 (1995). In the AFVH approach T c becomes maximal when the peak in the momentum averaged density of states ϱ(ω) crosses the Fermi level, but is not dependent on lifetime effects and the variation of the pairing interaction on doping.

    Google Scholar 

  25. H. Ding et al., Phys. Rev. Lett. 76, 1533 (1996).

    Google Scholar 

  26. D. Mandrus et al., Nature 351, 460 (1991).

    Google Scholar 

  27. R. J. Radtke et al., Phys. Rev. B 53, R552 (1996).

    Google Scholar 

  28. A. P. Kampf et al., Phys. Rev. B 42, 7967 (1990).

    Google Scholar 

  29. M. Langer, J. Schmalian, S. Grabowski, and K. H. Bennemann, Phys. Rev. Lett. 75, 4508 (1995).

    Article  CAS  Google Scholar 

  30. V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).

    Article  CAS  Google Scholar 

  31. S. Doniach and M. Inni, Phys. Rev. B 41, 6668 (1990).

    Article  CAS  Google Scholar 

  32. We acknowledge the financial support of the DFG, thank Z. X. Shen for sending us his papers prior to publication and E. Dagotto for useful discussions.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grabowski, S., Schmalian, J., Bennemann, K.H. (1998). Spin Fluctuation Effects in High-T c Superconductors. In: Morán-López, J.L. (eds) Current Problems in Condensed Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9924-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9924-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9926-2

  • Online ISBN: 978-1-4757-9924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics