Punctuated Equilibrium and Phyletic Gradualism

Some Facts from the Quaternary Mammalian Record
  • Anthony D. Barnosky


Since Eldredge and Gould (1972) first wrote about “punctuated equilibrium” as a pattern for the history of life, three factions have appeared among evolutionary theorists. One faction favors the picture of punctuated equilibrium (Eldredge and Gould, 1972; Gould and Eldredge, 1977; Gould, 1982, 1985; Stanley, 1975, 1979, 1982). Another favors the traditional alternative of phyletic gradualism or at least gradual change (Gingerich, 1976, 1984, 1985; Charlesworth et al., 1982; Rose and Bown, 1984; Malmgren and Kennett, 1981, 1983; Ozawa, 1975). And the third faction suggests that the major differences between punctuated equilibrium and phyletic gradualism largely are semantic because evolution can and does produce both patterns, and moreover both were envisioned by the formulators of the modern evolutionary synthesis and even by Darwin (for example, Levinton and Simon, 1980; Stebbins and Ayala, 1981; Mayr, 1982; Hoffman, 1982; Johnson, 1982; Charlesworth and Lande, 1982; Ginzburg and Rost, 1982; Rhodes, 1983; Chaline, 1984; Newman et al., 1985). The differences in opinion persist largely because of a relative paucity of facts—facts about evolutionary relationships within lineages, about the rate of morphological change through time, about the distribution of the changes in space, and about the relationship between morphological change and speciation.


Fossil Record Species Selection Allopatric Speciation Punctuate Equilibrium Carnegie Museum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnosky, A. D., 1985, Late Blancan (Pliocene) microtine rodents from Jackson Hole, Wyoming: Biostratigraphy and biogeography, J. Vertebr. Paleontol. 5(3):255–271.CrossRefGoogle Scholar
  2. Chaline, J., 1984, The polyphased evolution concept and its implications, Geobios 17(6): 783–795.CrossRefGoogle Scholar
  3. Charlesworth, B., and Lande, R., 1982, Morphological stasis and developmental constraint: No problem for Neo-Darwinism, Nature 296:610.CrossRefGoogle Scholar
  4. Charlesworth, B., Lande, R., and Slatkin, M., 1982, A Neo-Darwinian commentary on macroevolution, Evolution 36(3):474–498.CrossRefGoogle Scholar
  5. Cooke, H. B. S., 1978, Suid evolution and correlation of African hominid localities: An alternate taxonomy, Science 201:460–463.PubMedCrossRefGoogle Scholar
  6. Cope, J. C. W., and Skelton, P. W. (eds.), 1985, Evolutionary Case Histories from the Fossil Record, Special Papers in Palaeontology No. 33, Palaentological Association, London.Google Scholar
  7. Corbet, G. B., 1978, The Mammals of the Palaearctic Region—A Taxonomic Review, British Museum (Natural History), London, and Cornell University Press, Ithaca, New York.Google Scholar
  8. Cronin, J. E., Boaz, N. T., Stringer, C. B., and Yak, Y., 1981, Tempo and mode in hominid evolution, Nature 292:113–122.PubMedCrossRefGoogle Scholar
  9. Darwin, C, 1859, The Origin of Species, Murray, London.Google Scholar
  10. Eldredge, N., 1971, The allopatric model and phylogeny in Paleozoic invertebrates, Evolution 25:156–167.CrossRefGoogle Scholar
  11. Eldredge, N., and Cracraft, J., 1980, Phylogenetic Patterns and the Evolutionary Process, Columbia University Press, New York.Google Scholar
  12. Eldredge, N., and Gould, S. J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in: Models in Paleobiology (T. J. Schopf, ed.), Freeman, San Francisco, pp. 82–115.Google Scholar
  13. Emerson, S. B., and Radinsky, L., 1980, Functional analysis of sabertooth cranial morphology, Paleobiology 6(3):295–312.Google Scholar
  14. Gile, L. H., Peterson, F. F., and Grossman, R. B., 1965, The K horizon: A master soil horizon of carbonate accumulation, Soil Sci. 99:74–82.CrossRefGoogle Scholar
  15. Gile, L. H., Peterson, F. F., and Grossman, R. B., 1966, Morphological and genetic sequences of carbonate accumulations in desert soils, Soil Sci. 101:347–360.CrossRefGoogle Scholar
  16. Gingerich, P. D., 1976, Paleontology and phylogeny: Patterns of evolution at the species level in early Tertiary mammals, Am. J. Sci. 276:1–28.CrossRefGoogle Scholar
  17. Gingerich, P. D., 1984, Punctuated equilibria—Where is the evidence?, Syst. Zool. 33(3):335–338.CrossRefGoogle Scholar
  18. Gingerich, P. D., 1985, Species in the fossil record: Concepts, trends, and transitions, Paleobiology 11(1):27–41.Google Scholar
  19. Ginzburg, L. R., and Rost, J. D., 1982, Are ‘punctuations’ artifacts of time-scales?, Nature 296:610.CrossRefGoogle Scholar
  20. Gould, S. J., 1982, The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution, in: Perspectives on Evolution (R. Milkman, ed.), Sinauer, Sunderland, Massachusetts, pp. 83–104.Google Scholar
  21. Gould, S. J., 1985, The paradox of the first tier: An agenda for paleobiology, Paleobiology 11(1):2–12.Google Scholar
  22. Gould, S. J., and Eldredge, N., 1977, Punctuated equilibria: The tempo and mode of evolution reconsidered, Paleobiology 3:115–151.Google Scholar
  23. Graham, R. W., and Semken, H. A., 1976, Paleoecological significance of the short-tailed shrew (Blarina), with a systematic discussion of Blarina ozarkensis, J. Mammal. 57:433–449.CrossRefGoogle Scholar
  24. Guilday, J. E., Hamilton, H. W., Anderson, E., and Parmalee, P. W., 1978, The Baker Bluff cave deposit, Tennessee, and the late Pleistocene faunal gradient, Carnegie Mus. Nat. Hist. Bull. 11:1–67.Google Scholar
  25. Harris, J. M., and White, T. D., 1979, Evolution of the Plio-Pleistocene African Suidae, Trans. Am. Phil. Soc. 69(2):1–128.CrossRefGoogle Scholar
  26. Hibbard, C. W., and Zakrzewski, R. J., 1967, Phyletic trends in the late Cenozoic microtine, Ophiomys gen. nov., from Idaho, Univ. Mich. Mus. Paleontol. Contrib. 21(12):255–271.Google Scholar
  27. Hibbard, C. W., and Zakrzewski, R. J., 1972, A new species of microtine from the late Pliocene of Kansas, J. Mammal. 53:834–839.CrossRefGoogle Scholar
  28. Hoffman, A., 1982, Punctuated versus gradual mode of evolution: A reconsideration, in: Evólutionary Biology, Vol. 15 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), Plenum Press, New York, pp. 411–436.CrossRefGoogle Scholar
  29. Johnson, J. G., 1982, Occurrence of phyletic gradualism and punctuated equilibria through geologic time, J. Paleontol. 56(6):1329–1331.Google Scholar
  30. Jones, C. A., Choate, J. R., and Genoways, H. H., 1984, Phylogeny and paleobiogeography of short-tailed shrews (genus Blarina), in: Contributions in Quaternary Vertebrate Paleontology: A Volume in Memorial to John E. Guilday (H. H. Genoways and M. R. Dawson, eds.), Carnegie Museum of Natural History Special Publication 8, Pittsburgh, pp. 56-148.Google Scholar
  31. Kurtén, B., 1968, Pleistocene Mammals of Europe, Aldine, Chicago.Google Scholar
  32. Levinton, J. S., 1983, Stasis in progress: The empirical basis of macroevolution, Annu. Rev. Ecol Syst. 14:103–137.CrossRefGoogle Scholar
  33. Levinton, J. S., and Simon, C. M., 1980, A critique of the punctuated equilibrium model and implications for the detection of speciation in the fossil record, Syst. Zool. 29:130–142.CrossRefGoogle Scholar
  34. Maglio, V. J., 1970, Early Elephantidae of Africa and a tentative correlation of African Plio-Pleistocene deposits, Nature 225:328–332.PubMedCrossRefGoogle Scholar
  35. Maglio, V. J., 1973, Origin and evolution of the Elephantidae, Trans. Am. Phil. Soc. 63(3):1–149.CrossRefGoogle Scholar
  36. Malmgren, B. A., and Kennett, J. P., 1981, Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage: DSDP site 284, southwest Pacific, Paleobiology 7:230–240.Google Scholar
  37. Malmgren, B. A., and Kennett, J. P., 1983, Gradual evolution in a planktonic foraminiferal lineage reconsidered, phyletic gradualism in the Globorotalia inflata lineage vindicated, Paleobiology 9:427–428.Google Scholar
  38. Martin, J. E., Barnosky, A. D., and Barnosky, C. W., 1983, Fauna and flora associated with the West Richland mammoth from the Pleistocene Touchet beds in south-central Washington, Thomas Burke Memorial Wash. State Mus. Res. Rep. 3:1–61.Google Scholar
  39. Martin, L. D., 1979, The biostratigraphy of the arvicoline rodents in North America, Trans. Nebr. Acad. Sci. 7:91–100.Google Scholar
  40. Martin, L. D., 1980, Functional morphology and the evolution of cats, Trans. Nebraska Acad. Sci. 8:141–154.Google Scholar
  41. Martin, L. D., 1984, Phyletic trends and evolutionary rates, in: Contributions in Quaternary Vertebrate Paleontology: A Volume in Memorial to John E. Guilday (H. H. Genoways and M. R. Dawson, eds.), Carnegie Museum of Natural History Special Publication 8, Pittsburgh, pp. 526-538.Google Scholar
  42. Martin, R. A., 1979, Fossil history of the rodent genus Sigmodon, Evol. Monogr. 2:1–36.CrossRefGoogle Scholar
  43. Martin, R. A., 1984, The evolution of cotton rat body mass, in: Contributions in Quaternary Vertebrate PaJeontoJogy: A Volume in Memorial to John E. Guilday (H. H. Genoways and M. R. Dawson, eds.), Carnegie Museum of Natural History Special Publication 8, Pittsburgh, pp. 179-183.Google Scholar
  44. Mayr, E., 1982, Speciation and macroevolution, Evolution 36(6):1119–1131.CrossRefGoogle Scholar
  45. Nadler, C. F., Lyapunova, E. A., Hoffman, R. S., Vorontsov, N. N., Shaitarova, L. L., and Borisov, Y. M., 1984, Chromosomal evolution in Holarctic ground squirrels (Spermophilus) II. Giemsa-band homologies of chromosomes and the tempo of evolution, Sonderdruck Z. Säugetierknd. 49:78–90.Google Scholar
  46. Nelson, R. S., and Semken, H. A., 1970, Paleoecological and stratigraphie significance of the muskrat in Pleistocene deposits, Geol. Soc. Am. Bull. 81:3733–3738.CrossRefGoogle Scholar
  47. Newman, C. M., Cohen, J. E., and Kipnis, C, 1985, Neo-Darwinian evolution implies punctuated equilibria, Nature 315:400–401.CrossRefGoogle Scholar
  48. Ozawa, T., 1975, Evolution of LepidoJina muJtiseptata (Permian foraminifer) in East Asia, Mem. Fac. Sci. Kyushu Univ. Ser. D Geol. 23:117–164.Google Scholar
  49. Pye, K., 1983, Grain surface textures and carbonate content of late Pleistocene loess from West Germany and Poland, J. Sediment. Petrol. 53:973–980.Google Scholar
  50. Rensberger, J. M., 1973, An occlusion model for mastication and dental wear in herbivorous mammals, J. Paleontol. 47(3):515–528.Google Scholar
  51. Rensberger, J. M., Barnosky, A. D., and Spencer, P. K., 1984, Geology and Paleontology of a Pleistocene-to-Holocene Loess Succession, Benton County, Washington, Archaeological and Historical Services Eastern Washington University Reports in Archaeology and History 100-39.Google Scholar
  52. Repenning, C. A., 1983, Quaternary rodent biochronology and its correlation with climatic and magnetic stratigraphies, Paper presented at Symposium on Correlation of Quaternary Chronologies, Atkinson College, York University, Toronto, Canada, May 1983.Google Scholar
  53. Rhodes, H. T., 1983, Gradualism, punctuated equilibrium and the Origin of Species, Nature 305:269–272.PubMedCrossRefGoogle Scholar
  54. Rightmire, G. P., 1981, Patterns in the evolution of Homo erectus, Paleobiology 7(2):241–246.Google Scholar
  55. Rose, K. D., and Bown, T. M., 1984, Gradual phyletic evolution at the generic level in early Eocene omomyid primates, Nature 309:250–252.CrossRefGoogle Scholar
  56. Sarna-Wojcicki, A. M, Champion, D. E., and Davis, J. O., 1983, Holocene volcanism in the conterminous United States and the role of silicic volcanic ash layers in correlation of latest-Pleistocene and Holocene deposits, in: Late-Quaternary Environments of the United States, Volume 2, The Holocene (H. E. Wright, Jr., ed.), University of Minnesota Press, Minneapolis, pp. 52–77.Google Scholar
  57. Simpson, G. G., 1944, Tempo and Mode in Evolution, Columbia University Press, New York.Google Scholar
  58. Simpson, G. G., 1953, The Major Features of Evolution, Columbia University Press, New York.Google Scholar
  59. Stanley, S. M., 1975, A theory of evolution above the species level, Proc. Natl. Acad. Sci. USA 72:646–650.PubMedCrossRefGoogle Scholar
  60. Stanley, S. M., 1978, Chronospecies longevities, the origin of genera, and the punctuational model of evolution, Paleobiology 4(1):26–40.Google Scholar
  61. Stanley, S. M., 1979, MacroevoJution: Pattern and Process, Freeman, San Francisco.Google Scholar
  62. Stanley, S. M., 1982, Macroevolution and the fossil record, Evolution 36:460–473.CrossRefGoogle Scholar
  63. Stebbins, G. L., and Ayala, F. J., 1981, Is a new evolutionary synthesis necessary?, Science 213:967–971.PubMedCrossRefGoogle Scholar
  64. Stuart, A. J., 1982, Pleistocene Vertebrates in the British Isles, Longman, New York.Google Scholar
  65. Tucholka, P., 1977, Magnetic polarity events in Polish loess profiles, Biul. Inst. Geol. 305:117–123.Google Scholar
  66. Van Eysinga, F. W. B., 1978, Geological Time Table, 3rd ed., Elsevier, Amsterdam.Google Scholar
  67. Vrba, E. S., 1980, Evolution, species and fossils: How does life evolve?, S. Afr. J. Sci. 76(2):61–84.Google Scholar
  68. Vrba, E. S., 1983, Macroevolutionary trends: New perspectives on the roles of adaptation and incidental effect, Science 221:387–389.PubMedCrossRefGoogle Scholar
  69. Vrba, E. S., 1984a, What is species selection?, Syst. Zool. 33(3):318–327.CrossRefGoogle Scholar
  70. Vrba, E. S., 1984b, Patterns in the fossil record and evolutionary processes, in: Beyond Neo-Darwinism: An Introduction to the New Evolutionary Paradigm (M. W. Ho and P. T. Sanders, eds.), Academic, New York, pp. 115–142.Google Scholar
  71. Vrba, E. S., 1984c, Evolutionary pattern and process in the sister-group Alcelaphini—Aepycerotini (Mammalia: Bovidae), in: Living Fossils (N. Eldredge and S. M. Stanley, eds.), Springer, New York, pp. 62–79.CrossRefGoogle Scholar
  72. Wajtanowicz, J., and Buraczynski, J., 1978, Materials to the absolute chronology of the loesses of Grzeda Skolska, Ann. Univ. Mariae Curie-Sklodowska Sect. B 30/31:37–54.Google Scholar
  73. Warren, J. K., 1983, Pedogenic calcrete as it occurs in calcareous dunes in coastal South Australia, J. Sediment. Petrol 53:787–796.Google Scholar
  74. Wolpoff, M. H., 1984, Evolution in Homo erectus: The question of stasis, Paleobiology 10(4):389–406.Google Scholar
  75. Zakrzewski, R. J., 1974, Fossil Ondatrini from western North America, J. Mammal. 55(2):284–292.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Anthony D. Barnosky
    • 1
  1. 1.Section of Vertebrate FossilsCarnegie Museum of Natural HistoryPittsburghUSA

Personalised recommendations