Advertisement

Electronic Band Structure

  • G. Grosso
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The solution of Schrödinger’s equation for an electron moving in a periodic potential meets insurmountable difficulties if one does not make a number of simplifications. The main approximations used to get the problem to manageable dimensions are not discussed here for brevity, while the basic strategies employed to attack the problem of electronic-structure calculations are presented in Section 2.1. The successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green’s-function, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide deeper insight into the physical aspects of the different methods and a guide to the use of their mathematical techniques.

Keywords

Interband Transition Electronic Band Structure Excitonic Transition Crystal Potential Multicenter Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Hedin, Phys. Rev. 139, A796 (1965);ADSGoogle Scholar
  2. 1a.
    L. Hedin and S. Lundqvist, in: Solid State Physics (F. Seitz, D. Turnbull, and H. Ehrenreich, eds.), Vol. 23, p. 1, Academic Press, New York (1969).Google Scholar
  3. 2.
    T. Kato, T. Kobayashi, and M. Namiki, Prog. Theor. Phys., Suppl. 15, 3 (1960).MathSciNetADSGoogle Scholar
  4. 3.
    W. Brinkman and B. Goodman, Phys. Rev. 149, 597 (1966).ADSGoogle Scholar
  5. 4.
    N. O. Lipari and W. B. Fowler, Phys. Rev. B 2, 3354 (1970).ADSGoogle Scholar
  6. 5.
    N. E. Brener, Phys. Rev. B 11, 1600 (1975).ADSGoogle Scholar
  7. 6.
    E. O. Kane, Phys. Rev. B 5, 1493 (1972).ADSGoogle Scholar
  8. 7.
    S. Baroni, G. Grosso, and G. Pastori Parravicini, Phys. Rev. B 29, 2891 (1984).ADSGoogle Scholar
  9. 8.
    F. Bassani and G. Pastori Parravicini, Electronic States and Optical Transitions in Solids, Pergamon Press, Oxford (1975).Google Scholar
  10. 9.
    J. C. Slater, Quantum Theory of Molecules and Solids, Vols. 1–4, McGraw-Hill Book Compary, New York (1974).Google Scholar
  11. 10.
    G. C. Fletcher, Electron Band Theory of Solids, North-Holland Publishing Company, Amsterdam (1971).Google Scholar
  12. 11.
    J. Callaway, Energy Band Theory, Academic Press, New York (1964).zbMATHGoogle Scholar
  13. 12.
    F. Bloch, Z. Physik 52, 555 (1928).ADSzbMATHGoogle Scholar
  14. 13.
    W. B. Fowler, Phys. Rev. 132, 1591 (1963).ADSGoogle Scholar
  15. 14.
    E. E. Lafon and C. C. Lin, Phys. Rev. 152, 597 (1966).ADSGoogle Scholar
  16. 15.
    K. O. Ohata, H. Taketa, and S. Huzinaga, J. Phys. Soc. Jpn. 21, 2306 (1966);ADSGoogle Scholar
  17. 15a.
    K. O. Ohata, H. Taketa, and S. Huzinaga, J. Phys. Soc. Jpn. 21, 2313 (1966).ADSGoogle Scholar
  18. 16.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657 (1962).ADSGoogle Scholar
  19. 17.
    I. Shavitt, in: Methods in Computational Physics (B. Adler, S. Fernbach, and M. Rotenberg, eds.), Academic Press, New York (1963), and references cited therein.Google Scholar
  20. 18.
    R. Chaney, C. C. Lin, and E. E. Lafon, Phys. Rev. B 3, 459 (1971).ADSGoogle Scholar
  21. 19.
    I. P. Batra, S. Ciraci, and E. W. Rudge, Phys. Rev. B 15, 5858 (1977).ADSGoogle Scholar
  22. 20.
    J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).ADSzbMATHGoogle Scholar
  23. 21.
    F. Casula and D. R. Edmondson, J. Phys. C 6, 3403 (1973).ADSGoogle Scholar
  24. 22.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms, Springer-Verlag, Berlin (1957).zbMATHGoogle Scholar
  25. 23.
    D. W. Bullet, in: Solid State Physics (H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), Vol. 35, Academic Press, New York (1980).Google Scholar
  26. 24.
    J. Hugel, C. Carabatos, F. Bassani, and F. Casula, Phys. Rev. B 24, 5949 (1981).ADSGoogle Scholar
  27. 25.
    F. Bassani and G. Pastori Parravicini, Nuovo Cimento 50B, 95 (1967).Google Scholar
  28. 26.
    E. Doni, R. Girlanda, and L. Resca, J. Phys. Soc. Jpn., Suppl. 49, 89 (1980).Google Scholar
  29. 27.
    T. Ahlenius, J. Calais, and P. O. Löwdin, J. Phys. C 6, 1896 (1973).ADSGoogle Scholar
  30. 28.
    G. H. Wannier, Phys. Rev. 52, 191 (1937).ADSGoogle Scholar
  31. 29.
    W. Kohn, Phys. Rev. B 7, 4388 (1973).MathSciNetADSGoogle Scholar
  32. 30.
    W. H. Adams, J. Chem. Phys. 34, 89 (1961);MathSciNetADSGoogle Scholar
  33. 30a.
    W. H. Adams, J. Chem. Phys. 37, 2009 (1962).ADSGoogle Scholar
  34. 31.
    T. Gilbert, in: Molecular Orbitals in Chemistry. Physics and Biology (P. O. Löwdin and B. Pullman, eds.), Academic Press, New York (1964).Google Scholar
  35. 32.
    P. W. Anderson, Phys. Rev. 181, 25 (1969);ADSGoogle Scholar
  36. 32a.
    J. D. Weeks, P. W. Anderson, and A. G. H. Davidson, J. Chem. Phys. 58, 1388 (1973).ADSGoogle Scholar
  37. 33.
    D. E. Ellis and G. S. Painter, Phys. Rev. B 2, 2887 (1970);ADSGoogle Scholar
  38. 33a.
    D. E. Ellis and G. S. Painter, in: Computational Methods in Band Theory (P. M. Marcus, J. F. Janak, and A. R. Williams, eds.), p. 271, Plenum Press, New York (1971).Google Scholar
  39. 34.
    A. Zunger and A. J. Freeman, Phys. Rev. B 15, 4716 (1977);ADSGoogle Scholar
  40. 34a.
    A. Zunger and A. J. Freeman, Phys. Rev. B 15, 5049 (1977);ADSGoogle Scholar
  41. 34b.
    A. Zunger and A. J. Freeman, Phys. Rev. B 17, 1839 (1978);ADSGoogle Scholar
  42. 34c.
    A. Zunger and A. J. Freeman, Phys. Rev. B 17, 2030 (1978);ADSGoogle Scholar
  43. 34d.
    A. Zunger and A. J. Freeman, Phys. Rev. B 17, 4850 (1978).ADSGoogle Scholar
  44. 35.
    G. Grosso, Ph.D. Thesis, Scuola Normale Superiore, Pisa (1977);Google Scholar
  45. 35a.
    E. Doni, G. Grosso, G. Harbeke, E. Meier, and E. Tosatti, Phys. Stat. Solidi (b) 68, 569 (1975).ADSGoogle Scholar
  46. 36.
    G. Harbeke and E. Tosatti, RCA Rev. 36, 40 (1975).Google Scholar
  47. 37.
    F. Herman and S. Skillman, Atomic Structure Calculations, Prentice Hall Inc., Englewood Cliffs, NJ (1963).Google Scholar
  48. 38.
    J. E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer, Phys. Rev. Lett. 9, 215 (1962).ADSGoogle Scholar
  49. 39.
    T. O. Woodruff, Solid State Phys. 4, 367 (1957).Google Scholar
  50. 40.
    F. Herman, R. L. Kortum, C. D. Kugling, J. P. Van Dyke, and S. Skillman, in: Methods in Computational Physics (B. Alder, S. Fernback, and M. Rotenberg, eds.), Vol. 8, p. 193, Academic Press, London (1968), and references cited theirein.Google Scholar
  51. 41.
    C. Herring, Phys. Rev. 57, 1169 (1940).ADSGoogle Scholar
  52. 42.
    G. Grosso and G. Pastori Parravicini, Phys. Rev. B 20, 2366 (1979).ADSGoogle Scholar
  53. 43.
    S. Huzinaga, Approximate Atomic Functions, Int. Rep., Department of Chemistry, University of Alberta (1971).Google Scholar
  54. 44.
    S. Baroni, G. Grosso, and G. Pastori Parravicini, Phys. Rev. B 22, 6440 (1980).ADSGoogle Scholar
  55. 45.
    S. Baroni, G. Grosso, and G. Pastori Parravicini, Phys. Rev. B 23, 6441 (1981).ADSGoogle Scholar
  56. 46.
    M. Abramowitz and I. Stegun, eds. Handbook of Mathematical Functions, p. 319, Dover, New York (1972).zbMATHGoogle Scholar
  57. 47.
    W. Gautschi, SIAM J. Numer. Anal. 7, 187 (1970).MathSciNetADSzbMATHGoogle Scholar
  58. 48.
    W. Gautschi, Algorithm 363, Comm. ACM 12, 635 (1969). A Fortran translation of the above Algol algorithm is held in the CERN program library.Google Scholar
  59. 49.
    E. Clementi and C. Roetti, At. Data. Nucl. Data Tables 14, 177 (1974).ADSGoogle Scholar
  60. 50.
    B. Sontag, in: Rare Gas Solids (M. L. Klein and J. A. Venables, eds.), Vol. 2, Academic Press, London (1977), and references cited therein.Google Scholar
  61. 51.
    B. Segall and F. S. Ham, in: Methods in Computational Physics (B. Alder, S. Fernbach, and M. Rotenberg, eds.), Vol. 8, p. 251, Academic Press, New York (1968).Google Scholar
  62. 52.
    J. Korringa, Physica 13, 392 (1947).MathSciNetADSGoogle Scholar
  63. 53.
    W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).ADSzbMATHGoogle Scholar
  64. 54.
    B. Segall, Phys. Rev. 105, 108 (1957).MathSciNetADSGoogle Scholar
  65. 55.
    B. Segall and F. S. Ham, in: Tables of Structure Constants for Energy Band Calculations with the Green’s Function Method, unpublished.Google Scholar
  66. 56.
    F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).MathSciNetADSzbMATHGoogle Scholar
  67. 57.
    H. Overhof, in: Computational Methods in Band Theory (P. M. Marcus, J. F. Janak, and A. R. Williams, eds.), Plenum Press, New York (1971).Google Scholar
  68. 58.
    W. Lamb, D. M. Wood, and N. W. Ashcroft, Phys. Rev. B 21, 2248 (1980).ADSGoogle Scholar
  69. 59.
    F. Bassani, G. Iadonisi, and B. Preziosi, Rep. Prog. Phys. 37, 1099 (1974);ADSGoogle Scholar
  70. 59a.
    S. T. Pantelides, Rev. Mod. Phys. 50, 797 (1978).ADSGoogle Scholar
  71. 60.
    G. Grosso and G. Pastori Parravicini, J. Phys. C 13, L919 (1980).ADSGoogle Scholar
  72. 61.
    For a perspective on the studies of interfaces and overlayers, see F. Herman, J. Vac. Sci. Technol. 16, 1101 (1979).ADSGoogle Scholar
  73. 62.
    H. Ehrenreich and L. M. Schwartz, in: Solid State Physics (H. Ehrenreich, D. Turnbull, and F. Seitz, eds.), Vol. 31, p. 149, Academic Press, New York (1976).Google Scholar
  74. 63.
    For a general review, see O. K. Andersen, Phys. Rev. B 12, 3060 (1975);ADSGoogle Scholar
  75. 63a.
    O. K. Andersen, O. Jepsen, and D. Glötzel, in Highlights of Condensed Matter Theory (F. Bassani, F. Fumi and M. P. Tosi, eds.), p. 59, North Holland, Physics Publishing, Amsterdam (1985).Google Scholar
  76. 64.
    P. Giannozzi, G. Grosso, and G. Pastori Parravicini, Phys. Rev. B 27, 7553 (1983).ADSGoogle Scholar
  77. 65.
    P. Ewald, Ann. Phys. (Leipzig) 64, 253 (1921).zbMATHGoogle Scholar
  78. 66.
    B. Segall and T. Yang, Phys. Rev. B 21, 3737 (1980).ADSGoogle Scholar
  79. 67.
    H. L. Davis, in: Computational Methods in Band Theory (P. M. Marcus, J. F. Janak, and A. R. Williams, eds.), p. 183, Plenum Press, New York (1971).Google Scholar
  80. 68.
    P. Giannozzi, G. Grosso, and G. Pastori Parravicini, unpublished.Google Scholar
  81. 69.
    A. B. Kunz and D. J. Mickish, Phys. Rev. B 8, 779 (1983);ADSGoogle Scholar
  82. 69a.
    L. Dagens and L. Perrot, Phys. Rev. B 5, 641 (1972);ADSGoogle Scholar
  83. 69b.
    R. N. Euwema, G. G. Wepfer, G. T. Suratt, and D. L. Wilhite, Phys. Rev. B 9, 5249 (1974);ADSGoogle Scholar
  84. 69c.
    S. Natalizi and R. Resta, J. Phys. C 10, L477 (1977);ADSGoogle Scholar
  85. 69d.
    S. Baroni, G. Grosso, and G. Pastori Parravicini, Phys. Rev. B 22, 6440 (1980).ADSGoogle Scholar
  86. 70.
    W. A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, New York (1966).Google Scholar
  87. 71.
    V. Heine, Solid State Physics 24, 1 (1970);Google Scholar
  88. 71a.
    M. L. Cohen and V. Heine, Solid State Physics 24, 38 (1970);Google Scholar
  89. 71b.
    V. Heine and D. Weaire, Solid State Phys. 24, 250 (1970).Google Scholar
  90. 72.
    J. C. Phillips, Bonds and Bands in Semiconductors, Academic Press, New York (1973).Google Scholar
  91. 73.
    M. L. Cohen, Phys. Today 32, 41 (1979).Google Scholar
  92. 74.
    J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).ADSzbMATHGoogle Scholar
  93. 75.
    M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).ADSGoogle Scholar
  94. 76.
    E. Bassani and V. Celli, J. Phys. Chem. Solids 20, 64 (1961).ADSGoogle Scholar
  95. 77.
    B. J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276 (1962).ADSzbMATHGoogle Scholar
  96. 78.
    U. Rössler and J. Treusch, Rep. Prog. Phys. 35, 883 (1972).ADSGoogle Scholar
  97. 79.
    N. Ashcroft, Phys. Lett. 23, 48 (1966).ADSGoogle Scholar
  98. 80.
    I. Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965).ADSGoogle Scholar
  99. 81.
    D. Brust, J. C. Phillips, and F. Bassani, Phys. Rev. Lett. 9, 94 (1962).ADSGoogle Scholar
  100. 82.
    I. C. Schluter and M. Schluter, Phys. Rev. B 9, 1652 (1974).ADSGoogle Scholar
  101. 83.
    G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B 26, 4199 (1982).ADSGoogle Scholar
  102. 84.
    M. L. Cohen, IN Highlights of Condensed Matter Theory (F. Bassani, F. Fumi and M. P. Tosi, eds.), p. 16, North Holland, Physics Publishing, Amsterdam (1985).Google Scholar
  103. 85.
    D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • G. Grosso
    • 1
  1. 1.Physics DepartmentUniversity of PisaItaly

Personalised recommendations