Ion Implantation and Annealing

  • E. Rimini
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

Ion implantation has emerged in recent years as a common technique to dope semiconductors for integrated-circuit production. Ion implantation is the introduction of energetic charged particles into a substrate. The unique advantages of ion implantation are:
  1. 1.

    Precise on-line control of the total number of implanted ions.

     
  2. 2.

    Independent control of the penetration depth from the dose.

     
  3. 3.

    A wide concentration range is achievable, with the upper limit generally set by sputtering yield rather than by equilibrium solubility.

     
  4. 4.

    Ion implantation fits well into silicon planar technology. The oxide layers used for masking against diffusion can be used to mask against the ion beam.

     
  5. 5.

    Ion implantation is a low-temperature process, although subsequent annealing is necessary.

     

Keywords

Rapid Thermal Annealing Amorphous Layer Target Atom Laser Anneal Furnace Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ryssel and H. Glawischnig, eds., Ion Implantation Techniques, Springer-Verlag, Berlin (1982).Google Scholar
  2. 2.
    J. S. Williams and J. M. Poate, eds., Ion Implantation and Beam Processing, Academic Press, New York (1984).Google Scholar
  3. 3.
    J. F. Ziegler, ed., Ion Implanation: Science and Technology, Academic Press, New York (1984).Google Scholar
  4. 4.
    J. M. Poate and J. W. Mayer, eds., Laser Annealing of Semiconductors, Academic Press, New York (1982).Google Scholar
  5. 5.
    J. M. Poate, G. Foti, and D. C. Jacobson, eds., Surface Modification and Alloying, Plenum Press, New York (1983).Google Scholar
  6. 6.
    H. Glawischnig, Ion implantation system concepts, in: Ion Implantation Techniques (H. Ryssel and H. Glawischnig, eds.), p. 3, Springer-Verlag, Berlin (1982).CrossRefGoogle Scholar
  7. 7.
    D. Aitken, Ion sources, in: Ion Implantation Techniques (H. Ryssel and H. Glawischnig, eds.), p. 23, Springer-Verlag, Berlin (1982).CrossRefGoogle Scholar
  8. 8.
    Ch. M. McKenna, Faraday cup designs for ion implatation, in: Ion Implantation Techniques, (H. Ryssel and H. Glawischnig, eds.), p. 73, Springer-Verlag, Berlin (1982).CrossRefGoogle Scholar
  9. 9.
    G. Ryding and M. Farley, Nucl. Instrum. Methods 189, 295 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    J. Lindhard, M. Scharff, and H. Schiott, Mat.-Fys. Medd. K. Dan. Vidensk. Selsk, 33, 1–39 (1963).Google Scholar
  11. 11.
    K. B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, Vol. 2, Plenum Press, New York (1975).Google Scholar
  12. 12.
    S. Kalbitzer and H. Oetzmann, Proceedings of the 1978 International Conference on Ion Beam Modification of Material (J. Gyulai, ed.), Central Research Inst. H-1525, p. 3, Hungarian Academy of Sciences, Budapest (1978).Google Scholar
  13. 13.
    J. P. Biersack and J. F. Ziegler, The stopping and range of ions in solids, in: Ion Implantation Techniques (H. Ryssel and H. Glawischnig, eds.), p. 122, Springer-Verlag, Berlin (1982).CrossRefGoogle Scholar
  14. 14.
    J. F. Gibbson, Ion Implantation, in: Handbook on Semiconductors (T. S. Moss, ser. ed.), Vol. 3, Chap. 10 North-Holland Publishing Company, Amsterdam (1980).Google Scholar
  15. 15.
    K. Tsukamoto, Y. Akaseka, and K. Kijima, Jpn. J. Appl. Phys. 19, 87 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    W. K. Chu, Ion Beam Modification of Material, Cornell University Press, Ithaca (1984).Google Scholar
  17. 17.
    H. Ishiwara, S. Furukawa, J. Yamada, and M. Kawamura, in: Ion Implantation in Semiconductors (S. Namba, ed.), p. 423, Plenum Press, New York (1975).CrossRefGoogle Scholar
  18. 18.
    T. Hirao, K. Inone and S. Takayanagi, J. Appl Phys. 50, 193 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    E. F. Kennedy, L. Csepregi, J. W. Mayer, and T. W. Sigmon, in: Ion Implantation in Semiconductors and Other Materials (F. Chernow, ed.), p. 511, Plenum Press, New York (1977).Google Scholar
  20. 20.
    J. Sansbury, Ion implantation and its contribution to device and integrated circuit technology, in: Varian Seminar, Palo Alto, CA. (1979).Google Scholar
  21. 21.
    J. Bottiger, Radial Eff. 11, 69 and 133 (1971).CrossRefGoogle Scholar
  22. 22.
    H. H. Anderson and H. L. Bay, J. Appl Phys. 46, 1919 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    H. Ryssel and K. Hoffman, Ion implantation, in: Process and Device Simulation for MOS-VLSI Circuits (P. Antognetti et al., eds.), p. 125, NATO ASI Series, M. Nijhoff Publ., The Hague, Netherlands (1984).Google Scholar
  24. 24.
    H. Matsumura and S. Furukawa, Jpn. J. Appl Phys. 14, 1983 (1976).Google Scholar
  25. 25.
    R. G. Wilson, H. L. Dunlap, D. M. Jamba, and D. R. Myers, Angular sensitivity of controlled implanted doping profiles, NBS Special Publication 400–49, Gaithersburg, Maryland (1979).Google Scholar
  26. 26.
    D. Pramanik and M. I. Current, Solid State Technol. 64, p. 211 (May 1984).Google Scholar
  27. 27.
    R. S. Walker and D. A. Thompson, Radiat. Eff. 37, 113 (1978).CrossRefGoogle Scholar
  28. 28.
    F. Spaepen and D. Turnbull, in: Am. Inst. Phys. Conf. Proc. Laser Annealing in Semiconductors (1978).Google Scholar
  29. 29.
    P. Sigmund, Appl Phys. Lett. 25, 169 (1974).ADSCrossRefGoogle Scholar
  30. 30.
    D. A. Thompson and R. S. Walker, Radiat. Eff. 36, 91 (1978).CrossRefGoogle Scholar
  31. 31.
    A. Chu and J. F. Gibbons, in: Ion Implantation (F. Chernow, ed.), p. 711, Plenum Press, New York (1976).Google Scholar
  32. 32.
    L. Csepregi, E. F. Kennedy, J. W. Mayer, and T. W. Sigmon, J. Appl. Phys. 49, 3096 (1978).CrossRefGoogle Scholar
  33. 33.
    G. Foti, L. Csepregi, E. F. Kennedy, J. W. Mayer, P. P. Pronko, and M. D. Reichtin, Philos. Mag. A 37, 591 (1978).ADSCrossRefGoogle Scholar
  34. 34.
    S. Mader, J. Electron. Mater. 9, 963 (1980).ADSCrossRefGoogle Scholar
  35. 35.
    R. T. Fulks, C. J. Russo, P. R. Hanley, and T. I. Karmins, Appl Phys. Lett. 39, 604 (1981).ADSCrossRefGoogle Scholar
  36. 36.
    A. Gat, IEEE Electron Devices Lett. 2, 85 (1981).CrossRefGoogle Scholar
  37. 37.
    J. Gelpey and P. Stump, Microelectronic Manufacturing and Testing, p. 21. Lake Publishing Corporation, Libertyville, Ill. 60048 (Aug. 1983).Google Scholar
  38. 38.
    R. A. Powell, T. D. Yep, and R. T. Fulks, Appl. Phys. Lett. 39, 18 (1981).CrossRefGoogle Scholar
  39. 39.
    C. J. Russo, Rep. no. 16, Varian Associates, Gloucester, MA 01930, USA (Jan. 1982).Google Scholar
  40. 40.
    D. Panknin, E. Wieser, R. Klabes, and H. Syhre, Phys. Status Solidi A 77, 553 (1983).ADSCrossRefGoogle Scholar
  41. 41.
    A. Gat, L. Gerzberg, J. F. Gibbons, T. J. Magee, and J. D. Hong, Appl. Phys. Lett. 33, 775 (1978).ADSCrossRefGoogle Scholar
  42. 42.
    H. J. Leamy, J. M. Poate, and S. Ferris, eds., Laser-Solid Interaction, and Laser Processing, ALP Conf. No. 50, New York (1979).Google Scholar
  43. 42a.
    C. N. Anderson, G. K. Celler, and A. R. Rozgonyi, eds., Laser and Electron Beam Processing of Electronic Materials, Electrochemical Society Proc, Vol. 80–1, Princeton, N.J. (1980).Google Scholar
  44. 43.
    P. Baeri, S. U. Campisano, G. Foti, and E. Rimini, J. Appl. Phys. 50, 788 (1979).ADSCrossRefGoogle Scholar
  45. 44.
    R. Tsu, R. T. Hodgson, T. Y. Tan, and J. E. Baglin, Phys. Rev. Lett. 42, 1356 (1979).ADSCrossRefGoogle Scholar
  46. 45.
    C. W. White, P. P. Pronko, S. R. Wilson, B. R. Appleton, J. Narayan, and R. T. Young. J. Appl. Phys. 50, 3261 (1979).ADSCrossRefGoogle Scholar
  47. 46.
    P. Baeri, J. M. Poate, S. U. Campisano, G. Foti, E. Rimini, and A. G. Cullis, Appl. Phys. Lett. 37, 972 (1980).CrossRefGoogle Scholar
  48. 47.
    W. K. Chu, S. Mader, and E. Rimini in: Laser and Electron Beam Processing of Materials (C. W. White and P. S. Peercy, eds.), p. 253, Academic Press, New York (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • E. Rimini
    • 1
  1. 1.Istituto Dipartimentale di FisicaUniversita di CataniaCataniaItaly

Personalised recommendations