Advertisement

Bonds and Bands in Semiconductors

  • E. Mooser
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The question as to how the electrical properties of a solid — metallic, semiconducting, or insulating — are related to its chemical composition and crystal structure is indeed old. Friederich,(1) as long ago as 1925, reached the following conclusions on the basis of the then available experimental data:
  1. 1.

    In compounds the nonsaturated valence of the metal atom gives rise to electronic conduction; corresponding compounds with saturated bonds show very poor electrical conduction.

     
  2. 2.

    Free valences, namely free-valence electrons, normally lead to electrical conduction.

     
  3. 3.

    Compounds with metallic conduction always have “atomic structures”; only compounds without electronic conduction can crystallize in ionic structures.

     
  4. 4.

    Compounds with molecular structures do not have free conduction electrons.

     

Keywords

Valence Electron Atomic Orbital Antibonding Orbital Anion Sublattices Electron Charge Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Friederich, Z. Physik 31, 813 (1925).ADSCrossRefGoogle Scholar
  2. 2.
    A. Wilson, Proc. R. Soc. London, Ser. A 133, 458 (1931).ADSCrossRefGoogle Scholar
  3. 3.
    W. Meyer, Z. Elektrochem. 50, 274 (1944).Google Scholar
  4. 4.
    L. Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University Press, Ithaca, New York (1960).Google Scholar
  5. 5.
    E. Mooser and W. B. Pearson, J. Electronics 1, 629 (1956).Google Scholar
  6. 6.
    See, e.g., J. R. Reitz, Solid State Phys. 1, 1 (1955).CrossRefGoogle Scholar
  7. 7.
    F. Herman, Rev. Mod. Phys. 30, 102 (1958).ADSCrossRefGoogle Scholar
  8. 8.
    V. Heine, Proc. R. Soc. London, Ser. A240, 340, 354, 361 (1957).ADSCrossRefGoogle Scholar
  9. 9.
    F. Laves, Theory of Alloy Phases, p. 124, Am. Soc. Met., Cleveland, Ohio (1956).Google Scholar
  10. 10.
    A. Baldereschi, Phys. Rev. B 7, 5212 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    F. Seitz, The Modern Theory of Solids, p. 301, McGraw-Hill Book Company, New York (1940).zbMATHGoogle Scholar
  12. 12.
    R. McWeeny, Coulson’s Valence, 3rd edn., University Press, Oxford (1979).Google Scholar
  13. 13.
    F. Bassani and G. Pastori, Nuovo Cim. 50B, 95 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    M. Schlüter, Nuovo Cim. 13B, 313 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    E. Mooser, I. Ch. Schlüter, and M. Schlüter, J. Phys. Chem. Solids 35, 1269 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    A. Baldereschi, K. Maschke, A. Milchev, R. Pickenhain, and K. Unger, Phys. Status Solidi B 108, 511 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    F. Hulliger and E. Mooser, J. Phys. Chem. Solids 24, 283 (1963).ADSCrossRefGoogle Scholar
  18. 18.
    W. B. Pearson, Acta Crystallogr. 17, 1 (1964).CrossRefGoogle Scholar
  19. 19.
    F. Hulliger and E. Mooser, Prog. Solid State Chem. 2, 330 (1965).CrossRefGoogle Scholar
  20. 20.
    P. Junod and E. Mooser, Helv. Phys. Acta 29, 195 (1956).Google Scholar
  21. 21.
    Ya. A. Ugai and T. N. Vigutova, Sov. Phys. Solid State (Engl. Transi.) 1, 1935 (1960).Google Scholar
  22. 22.
    R. Suhrmann and C. Kangro, Naturwissenschaften 40, 137 (1953).ADSCrossRefGoogle Scholar
  23. 23.
    F. Hulliger, Nature 200, 1064 (1963).ADSCrossRefGoogle Scholar
  24. 24.
    F. Hulliger, Helv. Phys. Acta 34, 451 (1961).Google Scholar
  25. 25.
    S. Rundqist, Nature 185, 31 (1960).ADSCrossRefGoogle Scholar
  26. 26.
    E. Mooser and W. B. Pearson, Acta Cristallogr. 12, 1015 (1959).CrossRefGoogle Scholar
  27. 27.
    J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).ADSCrossRefGoogle Scholar
  28. 28.
    J. A. Van Vechten, Phys. Rev. 182, 891 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    J. A. Van Vechten, Phys. Rev. 187, 1007 (1969).ADSCrossRefGoogle Scholar
  30. 30.
    J. C. Phillips, Bonds and Bands in Semiconductors, Academic Press, New York, 1973.Google Scholar
  31. 31.
    J. St. John and A. N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).ADSCrossRefGoogle Scholar
  32. 32.
    G. Simons and A. N. Bloch, Phys. Rev. B 7, 2754 (1973).ADSCrossRefGoogle Scholar
  33. 33.
    A. N. Bloch and G. Simons, J. Am. Chem. Soc. 94, 8611 (1972).CrossRefGoogle Scholar
  34. 34.
    J. C. Phillips, Solid State Commun. 22, 549 (1977).ADSCrossRefGoogle Scholar
  35. 35.
    J. R. Chelikowski and J. C. Phillips, Phys. Rev. B 17, 2453 (1978).ADSCrossRefGoogle Scholar
  36. 36.
    W. Andreoni, A. Baldereschi, E. Biémont, and J. C. Phillips, Phys. Rev. B 20, 4814 (1979).ADSCrossRefGoogle Scholar
  37. 37.
    A. Zunger, Phys. Rev. B 22, 5839 (1980).ADSCrossRefGoogle Scholar
  38. 38.
    J. K. Burdett, G. D. Price, and S. L. Price, Phys. Rev. B 24, 2903 (1981).ADSCrossRefGoogle Scholar
  39. 39.
    J. K. Burdett, G. D. Price, and S. L. Price, J. Am. Chem. Soc. 104, 92 (1982).CrossRefGoogle Scholar
  40. 40.
    E. Mooser and F. Hulliger, J. Phys. Chem. Solids 26, 429 (1965).ADSCrossRefGoogle Scholar
  41. 41.
    J. A. Tossell, D. J. Vaughan, and J. K. Burdett, Phys. Chem. Minerals 7, 177 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • E. Mooser
    • 1
  1. 1.Institut de Physique AppliquéeEcole Polytechnique Fédérale, PHB-EcublensLausanneSwitzerland

Personalised recommendations