Time-Dependent Scattering in Coulombic Few-Body Systems and the Strong Operator Approximation Method
Abstract
The subject of this chapter is nonrelativistic quantum mechanical scattering in Coulombic few-body systems, using the time-dependent formulation. Our ultimate goal is to find efficient and reliable algorithms for numerical computation of scattering observables, such as phase shifts, cross sections, etc. Historically, the notion of a scattering operator was introduced by Heisenberg(1) and Møller.(2) The so-called Møller wave operator maps asymptotic states onto scattering states. At the time when the Møller wave operator was suggested, there was no mathematical proof of its existence. The first proof was given by Cook,(3) formulated in time-dependent language, for a two-body system interacting via a square integrable potential.
Keywords
Wave Packet Coulomb Potential Asymptotic State Wave Operator Breakup ReactionPreview
Unable to display preview. Download preview PDF.
References
- 1.W. Heisenberg, Z. Phys. 120, 513 (1943).CrossRefGoogle Scholar
- 2.C. Møller, Danske Vid. Selsk. Mat.-Fys. Medd. 23, 1 (1945).Google Scholar
- 3.J. M. Cook, J. Math. Phys. 36, 82 (1957).Google Scholar
- 4.
- 5.
- 6.J. Broekhove, L. Lathouwers and P. van Leuven (eds.), Lecture Notes in Physics, Vol. 256 (Springer, Berlin, 1985).Google Scholar
- 7.
- 8.K. C. Kulander (ed.), Time-Dependent Methods for Quantum Dynamics, Comput. Phys. Comm. 63, 1 (1991).Google Scholar
- 9.C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H. D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, J. Comput. Phys. 94, 59 (1991).CrossRefGoogle Scholar
- 10.H. Kröger, Phys. Repts. 210, 45 (1992).CrossRefGoogle Scholar
- 11.
- 12.
- 13.K. C. Kulander, J. Chem. Phys. 69, 5064 (1978).CrossRefGoogle Scholar
- 14.K. C. Kulander, Nucl. Phys. A353, 341 (1981).Google Scholar
- 15.P. M. Agrawal, V. Mohan, and N. Sathyamurthy, Chem. Phys. Lett. 114, 343 (1985).CrossRefGoogle Scholar
- 16.E. J. Heller, J. Chem. Phys. 68, 2066 (1978).CrossRefGoogle Scholar
- 17.E. J. Heller, in Potential Energy Surfaces and Dynamics Calculations (D. G. Truhlar, ed.) (Plenum, New York, 1981), p. 103.Google Scholar
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.H. Kröger, Phys. Lett. 135B, 1 (1984).Google Scholar
- 25.
- 26.D. Neuhauser, M. Baer, R. Judson, and D. J. Kouri, J. Chem. Phys. 90, 5882 (1989).CrossRefGoogle Scholar
- 27.D. Neuhauser, M. Baer, R. Judson, and D. J. Kouri, J. Chem. Phys. 93, 312, (1990).CrossRefGoogle Scholar
- 28.R. Judson, D. J. Kouri, D. Neuhauser, and M. Baer, Phys. Rev. A 42, 351 (1990).CrossRefGoogle Scholar
- 29.
- 30.M. H. Kalos, Monte Carlo Methods in Quantum Problems, Paris, France, 1982, Proc. Nato Adv. Res. Workshop, Nato ASI Ser. C, Vol. 125 (Reidel, Dordrecht, 1984).Google Scholar
- 31.K. E. Schmidt and M. H. Kalos, Applications of the Monte Carlo Method in Statistical Physics (K. Binder, ed.) (Springer, Berlin, 1984s).Google Scholar
- 32.M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (John Wiley, New York, 1986).CrossRefGoogle Scholar
- 33.
- 34.W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer, Berlin, 1983).CrossRefGoogle Scholar
- 35.L. D. Faddeev, Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory (Israel Program for Scientific Translation Jerusalem, 1965).Google Scholar
- 36.W. O. Amrein, J. M. Jauch, and K. B. Sinha, Scattering Theory in Quantum Mechanics, Lecture Notes and Supplements in Physics (Benjamin, Reading, MA., 1977).Google Scholar
- 37.M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. III: Scattering Theory (Academic Press, New York, 1979).Google Scholar
- 38.J. Weidmann, Linear Operations in Hilbert Spaces (Springer, New York, 1980).CrossRefGoogle Scholar
- 39.H. Baumgärtel and M. Wollenberg, Mathematical Scattering Theory (Birkhäuser Verlag, Basel, 1983).Google Scholar
- 40.H. van Haeringen, Charged-Particle Interactions (Coulomb Press, Leiden, 1985).Google Scholar
- 41.C. J. Joachain, Quantum Collision Theory (North Holland, Amsterdam, 1975).Google Scholar
- 42.J. Weidmann, Linear Operations in Hilbert Spaces (Springer, New York, 1980), Theorem 11.13, p. 352.CrossRefGoogle Scholar
- 43.J. R. Taylor, Scattering Theory (John Wiley, New York, 1972).Google Scholar
- 44.W. Gordon, Z. Phys. 48, 180 (1928).CrossRefGoogle Scholar
- 45.J. D. Dollard, Rocky Mountain J. Math. 1, 5 (1971).CrossRefGoogle Scholar
- 46.J. D. Dollard, Rocky Mountain J. Math. 2, 317 (1972).Google Scholar
- 47.N. F. Mott and A. S. W. Massey, The Theory of Atomic Collisions (Oxford University Press, 1949).Google Scholar
- 48.J. D. Dollard, J. Math. Phys. 5, 729 (1964).CrossRefGoogle Scholar
- 49.G. L. Nutt, J. Math. Phys. 9, 796 (1968).CrossRefGoogle Scholar
- 50.H. van Haeringen, J. Math. Phys. 17, 995 (1976).CrossRefGoogle Scholar
- 51.J. Zorbas, Nuov. Cim. Lett. 10, 121 (1974).CrossRefGoogle Scholar
- 52.J. M. Jauch, Helv. Phys. Acta 31, 127 (1958).Google Scholar
- 53.J. D. Dollard, J. Math. Phys. 9, 620 (1968).CrossRefGoogle Scholar
- 54.
- 55.I. W. Herbst, Comm. Math. Phys. 35, 181 (1974).CrossRefGoogle Scholar
- 56.A. M. Veselova, Theor. Math. Phys. 13, 368 (1972).CrossRefGoogle Scholar
- 57.Z. Bajzer, in Few-Body Nuclear Physics, (G. Pisent, V. Vanzani, and L. Fonda, eds.) (IAEA, Vienna, 1978), p. 365.Google Scholar
- 58.J. Schwinger, J. Math. Phys. 5, 1606 (1964).CrossRefGoogle Scholar
- 59.Z. Bajzer, Z. Phys. A278, 97 (1976).Google Scholar
- 60.A. Messiah, Quantum Mechanics, Vol. I (Elsevier, Amsterdam, 1961).Google Scholar
- 61.A.A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Birkhäuser, Basel, 1989).CrossRefGoogle Scholar
- 62.
- 63.A. J. Dragt, in Lectures on Nonlinear Orbit Dynamics (Fermilab. 1982), Proceedings of the Conference of High Energy Particle Accelerators, AIP Conf. Proc. No. 87 (R. A. Carrigan and F. R. Huson, eds.) (AIP, New York, 1982), p. 147.Google Scholar
- 64.E. Forest, Superconducting Super Collider Central Design Group Publication No. SSC-111 (1987).Google Scholar
- 65.R. S. Varga, Matrix Iterative Analysis (Prentice Hall, Englewood Cliffs, N.J. 1980).Google Scholar
- 66.H. Kröger, J. Math. Phys. 25, 1875 (1984).CrossRefGoogle Scholar
- 67.W. Schweiger, W. Plessas, L. P. KOK, and H. van Haeringen, Phys. Rev. C 27, 515 (1983).CrossRefGoogle Scholar
- 68.R. Girard, H. Kröger, P. Labelle, and Ž. Bajzer, Phys. Rev. A 37, 3195 (1988).CrossRefGoogle Scholar
- 69.
- 70.E. Hadjimichael, Nucl. Phys. A508, 161c (1990).Google Scholar
- 71.
- 72.R. Machleidt, in Advances in Nuclear Physics, Vol. 19. (J. W. Negele and E. Vogt, eds.) (Plenum, New York, 1989), p. 189.CrossRefGoogle Scholar
- 73.CH. Hajduk and P. E. Sauer, IX International Conference on Few-Body Problems, (M. J. Moravcsik and F. S. Levin, eds.) University of Oregon, Eugene, 1980), Paper II-16.Google Scholar
- 74.R. B. Wiringa, Proc. 3rd International Conference on Recent Progress in Many-Body Theory (H. Kümmel and M. Ristic, eds.) (Springer, Berlin, 1983).Google Scholar
- 75.K. T. KIM, Y. E. KIM, D. J. Klepacki, R. A. Brandenburg, E. P. Harper, R. Machleidt, Phys. Rev. C 38, 2366 (1988).CrossRefGoogle Scholar
- 76.
- 77.
- 78.M. Karus, M. Buballa, J. Helten, B. Laumann, R. Melzer, P. Niessen, H. Oswald, G. Rauprich, J. Schulte-Uebbing, and H. Paetz Gen. Schiek, Phys. Rev. C 31, 1112 (1985).CrossRefGoogle Scholar
- 79.
- 80.A. M. Nachabe, R. J. Slobodrian, B. K. Sinha, R. Roy, and H. Kröger, J. Phys. (Paris) 47, 1141 (1986).CrossRefGoogle Scholar
- 81.
- 82.V. V. Komarov, A. M. Popova, and V. V. Zatekin, Proc. X. International Conference on Few-Body Problems in Physics, Karlsruhe (B. Zeidnitz, ed.) (North Holland, Amsterdam, 1984), Vol. 2, p. 387.Google Scholar
- 83.
- 84.P. Doleschall, private communication.Google Scholar
- 85.D. Neuhauser, M. Baer, R. S. Judson, and D. J. Kouri, Comput. Phys. Comm. 63, 460 (1991).CrossRefGoogle Scholar