Advertisement

Dichroic Photoemission for Pedestrians

  • Gerrit van der Laan
Part of the NATO ASI Series book series (NSSB, volume 345)

Abstract

Until very recently it was commonly believed that core level photoemission would not depend on the linear or circular polarization of the incident photon, except in the near threshold region. However, in localized materials such as transition metal, rare earth, and actinide compounds there is a strong interaction between the core hole and the valence electrons which can result in spin and orbital polarization of the core level and consequently in dichroic photoemission.1 This phenomenon differs from magnetic x-ray dichroism (MXD),2 where the core electron is excited into the unoccupied part of the 3d level. The dichroism is then primarily caused by the Pauli exclusion principle, i.e. only electrons with specific spin and orbital magnetic quantum numbers can be excited into the empty valence states. In x-ray photoemission the electron is excited into continuum states which have no magnetic structure far above the Fermi level and the dichroism is induced by core-valence interaction.

Keywords

Circular Dichroism Core Level Magnetic Circular Dichroism Linear Dichroism Core Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. van der Laan, Phys. Rev. Lett. 66, 2527 (1991);ADSCrossRefGoogle Scholar
  2. 1a.
    G. van der Laan, J. Phys. Condens. Matter 3, 1015 (1991).ADSCrossRefGoogle Scholar
  3. 2.
    B.T. Thole, G. van der Laan and G.A. Sawatzky, Phys. Rev. Lett. 55, 2086 (1985).ADSCrossRefGoogle Scholar
  4. 3.
    L. Baumgarten, C.M. Schneider, H. Petersen, F. Schäfers, and J. Kirschner, Phys. Rev. B 44, 4406 (1991).ADSCrossRefGoogle Scholar
  5. 4.
    C.M. Schneider, D. Venus, and J. Kirschner, Phys. Rev. B 45, 5041 (1992).ADSCrossRefGoogle Scholar
  6. 5.
    G.D. Waddill, J.G. Tobin, and D.P. Pappas, Phys. Rev. B 46, 552 (1992).ADSCrossRefGoogle Scholar
  7. 6.
    G. van der Laan, M.A. Hoyland, M. Surman, C.F.J. Flipse, and B.T. Thole, Phys. Rev. Lett. 69, 3827 (1992).ADSCrossRefGoogle Scholar
  8. 7.
    D. Venus, L. Baumgarten, C.M. Schneider, C. Boeglin, and J. Kirschner, J. Phys. Condens. Matter 5, 1239 (1993).ADSCrossRefGoogle Scholar
  9. 8.
    C. Boeglin, E. Beaurepaire, V. Schorsch, B. Carrière, K. Hricovini, and G. Krill, Phys. Rev. B 48, 13123 (1993).ADSCrossRefGoogle Scholar
  10. 9.
    K. Starke, E. Navas, L. Baumgarten, and G. Kaindl, Phys. Rev. B 48, 1329 (1993).ADSCrossRefGoogle Scholar
  11. 10.
    Ch. Roth, F.U. Hillebrecht, H.B. Rose, and E. Kisker, Solid State Commun. 86, 647 (1993).ADSCrossRefGoogle Scholar
  12. 11.
    Ch. Roth, F.U. Hillebrecht, H.B. Rose, and E. Kisker, Phys. Rev. Lett. 70, 3479 (1993).ADSCrossRefGoogle Scholar
  13. 12.
    F.U. Hillebrecht and W.-D. Herberg, Z. Phys. B 93, 299 (1994).ADSCrossRefGoogle Scholar
  14. 13.
    L.H. Tjeng, C.T. Chen, P. Rudolf, G. Meigs, G. van der Laan, and B. T. Thole, Phys. Rev. B 48, 13378 (1993).ADSCrossRefGoogle Scholar
  15. 14.
    H. Ebert, L. Baumgarten, C.M. Schneider, and J. Kirschner, Phys. Rev. B 44, 4406 (1991).ADSCrossRefGoogle Scholar
  16. 15.
    B.T. Thole and G. van der Laan, Phys. Rev. Lett. 67, 3306 (1991).ADSCrossRefGoogle Scholar
  17. 16.
    B.T. Thole and G. van der Laan, Phys. Rev. Lett. 70, 2499 (1993).ADSCrossRefGoogle Scholar
  18. 17.
    G. van der Laan, Int. J. Mod. Phys. B 8, in print (1994).Google Scholar
  19. 18.
    D.M. Brink and G.R. Satchler, Angular Momentum (Oxford University Press, London, 1962).zbMATHGoogle Scholar
  20. 19.
    A.P. Yutsis, L.B. Levinson, and V.V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translation, Jerusalem, 1962).zbMATHGoogle Scholar
  21. 20.
    D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).CrossRefGoogle Scholar
  22. 21.
    B.T. Thole and G. van der Laan, Phys. Rev. B 44, 12424 (1991).ADSCrossRefGoogle Scholar
  23. 22.
    G. van der Laan and B.T. Thole, Phys. Rev. B 48, 210 (1993).ADSCrossRefGoogle Scholar
  24. 23.
    B.T. Thole and G. van der Laan, Phys. Rev. B 49, 9613 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Gerrit van der Laan
    • 1
  1. 1.Daresbury LaboratoryWarringtonUK

Personalised recommendations