d-Like Quantum-Well States and Interface States of Paramagnetic Overlayers on Co(0001)

  • D. Hartmann
  • A. Rampe
  • W. Weber
  • M. Reese
  • G. Güntherodt
Part of the NATO ASI Series book series (NSSB, volume 345)


Quantum-well states (QWS) are well known from semiconductor hetero structure s and have recently also been discovered in metallic overlayers on metal substrates1. Such metallic overlayers with thicknesses up to 30 atomic layers (AL) form a quantum well for the electrons inside them. One barrier of the quantum well is made up by the potential step due to the work function at the vacuum/overlayer interface and the other barrier by the potential step at the overlayer/substrate interface due to their different crystal potentials. Of special interest are overlayers on ferromagnetic substrates, because then the potential step at the overlayer/substrate interface can be spin-dependent leading to a quantum well of different depth for majority- and minority-spin electrons. The corresponding QWS therefore are spin-polarized. Furthermore, the binding energy of the QWS varies as a function of the overlayer thickness, following the dispersion of the overlayer bulk band from which they are derived2. For (100)-oriented noble metal overlayers this bulk band was identified as a sp-like band2–4. The spin-polarized QWS4–6 are considered as mediators of the oscillatory interlayer exchange coupling7,8. This description is equivalent to the RKKY-like coupling model of two ferromagnetic layers through a noble metal interlayer9. The connection between the two models is that the oscillation period is determined by extremal wave vectors of the Fermi surface, which are the corresponding wave vectors of the QWS. The present understanding is that the spin-dependent reflection coefficients of the electrons in the interlayer lead to dominantly minority-spin QWS and to a spin-density modulation.


Atomic Layer Spin Polarization Lattice Misfit Photoemission Spectrum Interlayer Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Miller, A. Samsavar, G. E. Franklin, T.-C. Chiang, Phys. Rev. Lett. 61:1404 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    J. E. Ortega, F. J. Himpsel, G. J. Mankey, R. F. Willis, Phys. Rev. B 47:1540 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    N. B. Brookes, Y. Chang, P. D. Johnson, Phys. Rev. Lett. 67:354 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    F. J. Himpsel, Phys. Rev. B 44:5966 (1991); J. E. Ortega, F. J. Himpsel, Phys. Rev. Lett. 69:844(1992)ADSCrossRefGoogle Scholar
  5. 5.
    K. Garrison, Y. Chang, P. D. Johnson, Phys. Rev. Lett. 71:2801 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    C. Carbone, E. Vescovo, O. Rader, W. Gudat, W. Eberhardt, Phys. Rev. Lett. 71:2805 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Edwards, J. Mathon, R. B. Muniz, M. S. Phan, Phys. Rev. Lett. 67:1927 (1991)Google Scholar
  8. 8.
    P. Lang, L. Nordstrom, P. H. Dederichs, Phys. Rev. Lett. 71:1927 (1993), and private communicationADSCrossRefGoogle Scholar
  9. 9.
    P. Bruno, C. Chappert, Phys. Rev. Lett. 67: 1602 (1991); and Phys. Rev. B 46:261 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    K. Koike, T. Furukawa, G. P. Cameron, Y. Murayama, Colloquium Digest of the 14 th International Colloquium on Magnetic Films and Surfaces, Düsseldorf 1994, p. 788Google Scholar
  11. 11.
    Y. Suzuki, P. Bruno, W. Geerts, T. Katayama, Colloquium Digest of the 14 th International Colloquium on Magnetic Films and Surfaces, Düsseldorf 1994, p. 777Google Scholar
  12. 12.
    P. Beauvillain, A. Bounouh, C. Chappert, R. Mégy, P. Veillet, Colloquium Digest of the 14 th International Colloquium on Magnetic Films and Surfaces, Düsseldorf 1994, p. 712Google Scholar
  13. 13.
    V. Grolier, D. Renard, B. Bartenlian, P. Beauvillain, C. Chappert, C. Dupas, J. Ferré, M. Galtier, E. Kolb, M. Mulloy, J. P. Renard, P. Veilleit, Phys. Rev. Lett. 71:3023 (1993) and references therein.ADSCrossRefGoogle Scholar
  14. 14.
    W. F. Egelhoff Jr., M. J. Kief, Phys. Rev. B 45:7795 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    M. T. Johnson, R. Coehoorn, J. J. de Fries, N. W. E. McGee, J. van de Steege, P. J. H. Bloemen, Phys. Rev. Lett. 69:969 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    J. Kohlhepp, S. Cordes, H. J. Elmers, U. Gradmann, J. Magn. Magn. Mater. 111:L231 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    A. Schreyer, K. Bröhl, J. F. Akner, Th. Zeidler, P. Bödecker, N. Metoki, C. F. Majkrzak, H. Zabel, Phys. Rev. B 47:15334 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    S. Blügel, Phys. Rev. Lett. 68:851 (1992) and references thereinADSCrossRefGoogle Scholar
  19. 19.
    R. Raue, H. Hopster, E. Kisker, Rev. Sci. Instrum. 55:383 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    B. G. Johnson, P. J. Berlowitz, D. W. Goodman, C. H. Bartholomew,J. Sci. 217:13 (1989)Google Scholar
  21. 21.
    A. Zangwill, Chapter 16 , in: “Physics at Surfaces”, Cambridge University Press (1988)Google Scholar
  22. 22.
    P. Seah, W. A. Dench, Surf. Interface Anal. 1:2 (1979)CrossRefGoogle Scholar
  23. 23.
    D. Hartmann, W. Weber, A. Rampe, S. Popovic, G. Güntherodt, Phys. Rev. B 48:16837(1993)ADSCrossRefGoogle Scholar
  24. 24.
    F. J. Himpsel, D. E. Eastman, Phys. Rev. B 21:3207 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    R. Courths, H.-G. Zimmer, A. Goldmann, H. Saalfeld, Phys. Rev. B 34:3577 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    W. Weber, D. A. Wesner, G. Güntherodt, U. Linke, Phys. Rev. Lett. 66:942 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    W. Weber, D. A. Wesner, D. Hartmann, G. Güntherodt, Phys. Rev. B 46:6199 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    O. Rader, C. Carbone, W. Clemens, E. Vescovo, S. Blügel, W. Eberhardt, Phys. Rev. B 45:13823(1992)ADSCrossRefGoogle Scholar
  29. 29.
    A. Rampe, D. Hartmann, W. Weber, S. Popovic, M. Reese, G. Güntherodt, accepted for publication in Phys. Rev. B (1994)Google Scholar
  30. 30.
    T. Kachel, W. Gudat, C. Carbone, E. Vescovo, S. Blügel, U. Alkemper, W. Eberhardt, Phys. Rev. 546:12888(1992)CrossRefGoogle Scholar
  31. 31.
    K. Totland, P. Fuchs, J. C. Gröbli, M. Landolt, Phys. Rev. Lett. 70:2487 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    P. H. Dederichs, private communicationGoogle Scholar
  33. 33.
    S. S. P. Parkin, N. More, K. P. Roche, Phys. Rev. Lett. 67:2304 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    K. Ounadjela, A. Arbaoui, A. Herr, R. Poinsot, D. Dinia, D. Müller, P. Panissod, J. Magn. Magn. Mater. 106:1896 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    M. D. Stiles, Phys. Rev. B 48:7238 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    Ch. Roth, F. U. Hillebrecht, H. B. Rose, E. Kisker, Phys. Rev. Lett. 70:3479 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    D. Venus, Phys. Rev. B 49 (1994) 8821ADSCrossRefGoogle Scholar
  38. 38.
    B. Schmiedeskamp, B. Kessler, N. Müller, G. Schönhense, U. Heinzmann, Solid State Commun. 65:665(1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. Hartmann
    • 1
  • A. Rampe
    • 1
  • W. Weber
    • 1
    • 2
  • M. Reese
    • 1
  • G. Güntherodt
    • 1
  1. 1.2. Physikalisches InstitutRWTH AachenAachenGermany
  2. 2.IBM Research DivisionZürich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations