Investigation of Local Electronic Properties in Solids by Transmission Electron Energy Loss Spectroscopy

  • Christian Colliex
Part of the NATO ASI Series book series (NSSB, volume 345)


High energy electron energy-loss spectroscopy (EELS) has been used over the last decades for the investigation of the local electronic properties in solids, as an alternative to optical techniques, with the advantage of covering a very large spectral range (from the visible to the x-ray domain) in a single experiment. On the low energy side it has provided a direct insight into the physics of plasmons and interband transitions as summarized in the textbooks by Raether1,2, Schnatterly3, Schattschneider4, Fink5 and Colliex6..


Transition Matrix Element Vacant State Energy Loss Function Core Edge Crystal Field Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Raether, “Electron Energy Loss Spectroscopy”, in Springer Tracts in Modern Physics, 38:85, Springer Berlin (1965).ADSCrossRefGoogle Scholar
  2. 2.
    H. Raether, “Excitation of Plasmons and Interband Transitions by Electrons”, Springer Tracts in Modern Physics, Vol. 88, Springer Berlin (1980).Google Scholar
  3. 3.
    S.E. Schnatterly, Inelastic electron scattering spectroscopy, Solid State Physics 14:275 (1979).CrossRefGoogle Scholar
  4. 4.
    P. Schattschneider, “Fundamentals of Inelastic Electron Scattering”, Springer Verlag, Wien New York (1986).CrossRefGoogle Scholar
  5. 5.
    J. Fink, Transmission electron energy-loss spectroscopy, in “Unoccupied Electronic States”, J.C. Fuggle and J.E. Inglesfield eds., Topics in Applied Physics, 69:203 Springer Berlin (1992).Google Scholar
  6. 6.
    C. Colliex, Electron energy loss spectroscopy in the electron microscope, in “Adv. in Optical and Electron Microscopy”, R. Barer and V.E. Cosslett eds., 9:65 Academic Press London (1984).Google Scholar
  7. 7.
    G. Ruthemann, Naturwissenschaften 30:145 (1942)ADSCrossRefGoogle Scholar
  8. 8.
    C. Colliex and B. Jouffrey, Contribution à l’étude des pertes d’énergie dues à l’excitation de niveaux profonds, CR. Acad. Sci. Paris 270:144 (1970).Google Scholar
  9. 9.
    C. Colliex and B. Jouffrey, Diffusion inélastique des électrons dans un solide par excitation de niveaux atomiques profonds: Spectres de pertes d’énergie, Phil. Mag. 25:491 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    M. Isaacson, Interaction of 25 keV electrons with the nucleic acid bases adenine, thymine and uracyl. I. Outer shell excitations. IL Inner shell excitation and inelastic scattering cross section. J. Chem. Phys. 56:1803 and 1813 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    M. Terauchi, R. Kuzuo, F. Satoh, M. Tanaka, K. Tsuno and J. Ohyama, Performance of a new high-resolution electron energy-loss spectroscopy microscope, Microsc. Microanal. Microstruct. 2:351 (1991).CrossRefGoogle Scholar
  12. 12.
    R.F. Egerton, “Electron Energy Loss Spectroscopy in the Electron Microscope”, Plenum Press, New York (1986).Google Scholar
  13. 13.
    O.L. Krivanek and P.R. Swann, An advanced electron energy loss spectrometer, in “Quantitative microanalysis with high spatial resolution”, 136, The Metals Society London (1981).Google Scholar
  14. 14.
    D. Bouchet, C. Colliex, P. Flora, O.L. Krivanek, C. Mory and M. Tencé, Analytical electron microscopy at the atomic level with PEELS, Microsc. Microanal. Microstruct. 1:443 (1990).CrossRefGoogle Scholar
  15. 15.
    N.D. Browning, M.F. Chisholm and SJ. Pennycook, Atomic-resolution chemical analysis using a scanning transmission electron microscope, Nature 366:143 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    D.A. Müller, Y. Tsou, R. Raj and J. Silcox, Mapping sp2 and sp3 states at sub-nanometre spatial resolution, Nature 366:725 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    P.E. Batson, Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity, Nature 366:727 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    P.E. Batson, High resolution electron energy-loss spectrometer for the STEM, Rev. Sci. Instr. 57:43 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    O.L. Krivanek, C.C. Ahn and R.B. Keeney, Parallel-detection electron energy-loss spectrometer using quadrupole lenses, Ultramicroscopy 22:103 (1987).CrossRefGoogle Scholar
  20. 20.
    P.E. Batson, Electronic structure in confined volumes using spatially resolved EEL scattering, Materials Science and Engineering B14:297 (1992).CrossRefGoogle Scholar
  21. 21.
    P.E. Batson, Carbon Is near-edge absorption fine structure in graphite, Phys. Rev. B 48:2608 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    C. Colliex, Electron energy loss spectroscopy on solids, in “International Tables for Crystallography”, Volume C Mathematical, Physical and Chemical Tables, 338, International Union of Crystallography, Kluwer Academic Press, Dordrecht (1992).Google Scholar
  23. 23.
    R.D. Leapman, P.l. Fejes and J. Silcox, Orientation dependence of core edges from anisotropic materials determined by inelastic scattering of fast electrons, Phys. Rev. B 28:2361 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    P.E. Batson, K.L. Kavanagh, J.M. Woodall and J.W. Mayer, Observation of defect electronic states associated with misfit dislocations at the GaAs/GalnAs interface, Phys. Rev. Lett. 57:2729 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    P. Schattschneider, The dielectric description of inelastic electron scattering, Ultramicroscopy 28:1 (1989).CrossRefGoogle Scholar
  26. 26.
    R. D. Leapman, EELS quantitative analysis, in “Transmission Electron Energy Loss Spectrometry in Materials Science”, M.M. Disko, C.C. Ahn and B. Fultz eds. p.47, TMS Warrendale, Pa 15086 (1992).Google Scholar
  27. 27.
    F. Hofer, Determination of inner-shell cross-sections for EELS quantification, Microsc. Microanal. Microstruct. 2:215 (1992).MathSciNetCrossRefGoogle Scholar
  28. 28.
    C. Colliex, T. Manoubi and C. Ortiz, EELS near-edge fine structures in the iron-oxygen system, Phys. Rev. B 44:11402 (1991).ADSCrossRefGoogle Scholar
  29. 29.
    R.D. Leapman and D.E. Newbury, Trace analysis of transition elements and rare earths by PEELS, Proc. EMSA meeting 1250 (1992).Google Scholar
  30. 30.
    O.L. Krivanek, C. Mory, M. Tencé and C. Colliex, EELS quantification near the single-atom limit, Microsc. Microanal. Microstruct. 2:257 (1991).CrossRefGoogle Scholar
  31. 31.
    C. Colliex, The impact of EELS in materials science, Microsc. Microanal. Microstruct. 2:403 (1991).CrossRefGoogle Scholar
  32. 32.
    H. Kurata and C. Colliex, Electron-energy-loss core-edge structures in manganese oxides, Phys.Rev.B 48:2102 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    J.A. Tosseil, D.J. Vaughan and K.H. Johnson, The electronic structure of rutile, wustite and hematite from MO calculations, Am. Mineralogist 59:319 (1974).Google Scholar
  34. 34.
    R. Brydson, H. Sauer and W. Engel, Electron energy-loss near-edge fine structure as an analytical tool: The study of minerals, In “Transmission Electron Energy Loss Spectrometry in Materials Science”, M.M. Disko, C.C. Ahn and B. Fultz eds., p. 131, TMS Warrendale, Pa 15086 (1992).Google Scholar
  35. 35.
    M.V. Ryzhkov, V.A. Gubanov, Yu.A. Teterin and A.S. Baev, Electronic structure, chemical bonding and x-ray photoelectron spectra of light rare-earth oxides, Z. Phys. B Cond. Matt. 59:1 (1985).CrossRefGoogle Scholar
  36. 36.
    H. Kurata, E. Lefèvre, C. Colliex and R. Brydson, EELS near-edge structures in the oxygen K-edge spectra of transition-metal oxides, Phys. Rev. B 47:13763 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    J. Stohr, F. Sette and A.L. Johnson, Near-edge x-ray absorption fine structure studies of chemisorbed hydrocarbons: bond lengths with a ruler, Phys. Rev. Lett.. 53:1684 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    P. Rez, Energy loss fine structure, in “Transmission Electron Energy Loss Spectrometry in Materials Science”, M.M. Disko, C.C. Ahn and B. Fultz eds. TMS, Warrendale, Pa 15086 (1992).Google Scholar
  39. 39.
    X. Weng, P. Rez and P.E. Batson, Single electron calculations for the Si L23 near edge structure, Sol. State Comm. 74:1013 (1990).ADSCrossRefGoogle Scholar
  40. 40.
    G.A. Sawatzky, Theoretical description of near edge EELS and XAS spectra, Microsc. Microanal. Microstruct. 2:153 (1991).CrossRefGoogle Scholar
  41. 41.
    F.M.F. de Groot, J.C. Fuggle, B.T. Thole and G.A. Sawatzky, 2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including the crystal field, Phys. Rev.B 42:5459(1990).ADSCrossRefGoogle Scholar
  42. 42.
    G. van der Laan and I.W. Kirkman, The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry, J. Phys.: Condens. Matter 4:4189 (1992).ADSCrossRefGoogle Scholar
  43. 43.
    B.T. Thole and G. van der Laan, Branching ratio in x-ray absorption spectroscopy, Phys. Rev. 5 38:3158 (1988).CrossRefGoogle Scholar
  44. 44.
    C. Colliex, Spatially-resolved electron energy-loss spectrometry, in “Transmission Electron Energy Loss Spectrometry in Materials Science”, M.M. Disko, C.C. Ahn and B. Fultz eds. p.85, TMS Warrendale, Pa 15086 (1992).Google Scholar
  45. 45.
    F.M.F. de Groot, X-ray absorption and dichroism of transition metals and their compounds, to be published in Journal of Electron Spectroscopy and Related Phenomena (1994).Google Scholar
  46. 46.
    T.I. Morrison, M.B. Brodsky, N.J. Zaluzec and L.R. Sill, Iron d-band occupancy in amorphous FexGe1-x, Phys.Rev. B 32:3107 (1985).ADSCrossRefGoogle Scholar
  47. 47.
    D.M. Pease, S.D. Bader, M.B. Brodsky, J.I. Budnick, T.I. Morrison and N.J. Zaluzec, Anomalous L3/L2 white line ratios and spin pairing in 3d transition metals and alloys: Cr metal and Cr20Au80, Phys. Lett. 114A:491 (1986).CrossRefGoogle Scholar
  48. 48.
    T.I. Morrison, C.L. Foiles, D.M. Pease and N.J. Zaluzec, Relationships between local order and magnetic behavior in amorphous Fe0.3 Y0.7: Extended x-ray absorption fine structure and susceptibility, Phys. Rev. B 36:3739 (1987).ADSCrossRefGoogle Scholar
  49. 49.
    H. Kurata and N. Tanaka, Iron L23 white line ratio in nm-sized y-iron crystallites embedded in MgO, Microsc. Microanal. Microstruct. 2:283 (1991).Google Scholar
  50. 50.
    C. Jeanguillaume and C. Colliex, Spectrum-image: the next step in EELS digital acquisition and processing, Ultramicroscopy 28:252(1989).CrossRefGoogle Scholar
  51. 51.
    C. Colliex, M. Tencé, E. Lefèvre, C. Mory, H. Gu, D. Bouchet and C. Jeanguillaume, Electron energy-loss spectrometry mapping, Mikrochim. Acta 114/115:71 (1994).CrossRefGoogle Scholar
  52. 52.
    C. Colliex, E. Lefèvre and M. Tencé, High spatial resolution mapping of EELS fine structures, Inst. Phys. Conf. Ser. 138:25 (1993).Google Scholar
  53. 53.
    M. Tencé, M. Quartuccio and C. Colliex, PEELS compositional profiling and mapping at nanometer spatial resolution, to be published in Ultramicroscopy (1994).Google Scholar
  54. 54.
    P. Ajayan, C. Colliex, J.M. Lambert, P. Bernier, L. Barbedette, M. Tencé and O. Stephan, Growth of manganese filled nanofibers in the vapor phase, Phys. Rev. Lett. 72:1722 (1994)ADSCrossRefGoogle Scholar
  55. 55.
    K. Yu-Zhang, G. Boisjolly, J. Rivory, L. Kilian and C. Colliex, Characterization of TiO2/SiO2 multilayers by high resolution transmission electron microscopy and electron energy loss spectroscopy, to be published in the Proceedings of Int. Conf. Metallurgical Coatings and Thin Films, San Diego (1994)Google Scholar
  56. 56.
    A. Albu-Yaron, S. Bastide, D. Bouchet, N. Brun, C. Colliex and C. Lévy-Clément, Nanostructural and nanochemical investigation of luminescent photoelectrochemically etched porous n-type silicon J. Phys. I France 4:1181 (1994).CrossRefGoogle Scholar
  57. 57.
    P. Bayle, T. Deutsch, B. Gilles, F. Lançon, A. Marty, J. Thibault, C. Colliex and M. Tencé, HREM observations, PEELS analysis and numerical simulations of Au/Ni MBE multilayers, to be published in Proc. MRS Society, Boston (Dec 1993).Google Scholar
  58. 58.
    P. Bayle, T. Deutsch, B. Gilles, F. Lançon, A. Marty and J. Thibault, Au/Ni MBE multilayers: quantitative analysis at the atomic scale of the deformation and of the chemical profiles, to be published in Ultramicros copy (1994).Google Scholar
  59. 59.
    V.J. Nithianandam and S.E. Schnatterly, Soft x-ray emission and inelastic electron scattering study of the electronic excitations in amorphous and crystalline silicon dioxide, Phys. Rev. B 38:5547 (1988)ADSCrossRefGoogle Scholar
  60. 60.
    L.M. Brown, The ultimate analysis, Nature 366:721 (1993)ADSCrossRefGoogle Scholar
  61. 61.
    C. Colliex, Energy-loss spectroscopy looks up, Physics World Vol. 7, N°5, 27 (1994)Google Scholar
  62. 62.
    D. Blavette, A. Bostel, J.M. Sarrau, B. Deconihout and A. Menand, An atom probe for three-dimensional tomography, Nature 363:432 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Christian Colliex
    • 1
  1. 1.Laboratoire de Physique des Solides associé au CNRSUniversité Paris SudOrsayFrance

Personalised recommendations